Chemical Bonding and Molecular Structure

Question1

Choose the polar molecule from the following :

[27-Jan-2024 Shift 1]

Options:

A. CCl_4 B. CO_2 C. $CH_2 = CH_2$ D.

CHCl₃

Answer: D

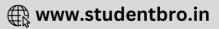
Solution:

 $\mu \neq 0$

 $\ensuremath{\mathsf{CHCl}}_3$ is polar molecule and rest all molecules are non-polar

Question2

Sum of bond order of CO and NO⁺ is____

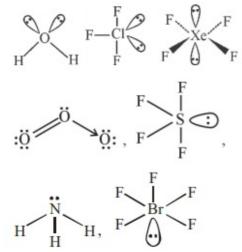

[27-Jan-2024 Shift 1]

Options:

Answer: 6

Solution:

 $CO \Rightarrow \overline{C} \equiv \overset{+}{O} : BO = 3$ $NO^+ \Rightarrow N \equiv O^+ : BO = 3$


Question3

Number of compounds with one lone pair of electrons on central atom amongst following is O_3 , H_2O , SF_4 , ClF_3 , NH_3 , BrF_5 , XeF_4 ___

[29-Jan-2024 Shift 1]

Answer: 4

Question4

The number of species from the following which are paramagnetic and with bond order equal to one is____

 $H_2, He_2^+, O_2^+, N_2^{2-}, O_2^{2-}, F_2, Ne_2^+, B_2$

[29-Jan-2024 Shift 1]

Answer: 1

Solution:

Magne	etic behaviour	Bond order
H ₂	Diamagnetic	1
0 ₂ ⁺	Paramagnetic	0.5
$\operatorname{He_2}^+$	Paramagnetic	2.5
N ₂ ²⁻	Paramagnetic	2
02 ²⁻	Diamagnetic	1
F ₂	Diamagnetic	1
Ne2 ⁺	Paramagnetic	0.5
B ₂	Paramagnetic	1

The total number of molecules with zero dipole moment among CH_4 , BF_3 , H_2O , HF, NH_3 , CO_2 and SO_2 is____

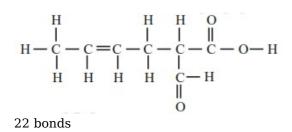
[29-Jan-2024 Shift 2]

Answer: 3

Solution:

Molecules with zero dipole moment = CO_2 , CH_4 , BF_3

Question6


The total number of 'Sigma' and Pi bonds in 2formylhex-4-enoic acid is

[29-Jan-2024 Shift 2]

Answer: 22

Solution:

Question7

The total number of anti bonding molecular orbitals, formed from 2 s and 2p atomic orbitals in a diatomic molecule is___

[29-Jan-2024 Shift 2]

Answer: 4

Solution:

Antibonding molecular orbital from 2 s = 1

Antibonding molecular orbital from 2p = 3

Total = 4

Question8

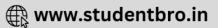
Match List-I with List-II

List-I Molecule	List-II Shape
(A) BrF ₅	(I) T-shape
(B) H ₂ O	(II) See saw
(C) ClF ₃	(III) Bent
(D) SF ₄	(IV) Square pyramidal

[30-Jan-2024 Shift 1]

Options:

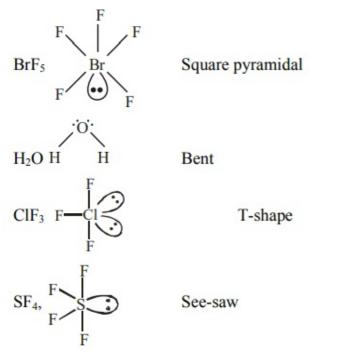
```
A.
```


(A)-I, (B)-II, (C)-IV, (D)-III

В.

```
(A) -II, (B)-I, (C)-III, (D)-IV
```

C.


(A)-III, (B)-IV, (C)-I, (D)-II

D.

(A)-IV, (B)-III, (C)-I, (D)-II

Answer: D

Solution:

Question9

The total number of molecular orbitals formed from 2 s and 2p atomic orbitals of a diatomic molecule

[30-Jan-2024 Shift 1]

Answer: 8

Solution:

Two molecular orbitals $\sigma 2 s$ and $\sigma * 2 s$.

Six molecular orbitals $\sigma 2p_z$ and $\sigma * 2p_z$.

 $\pi 2 p_{\rm x}, \pi 2 p_{\rm y} \text{ and } \pi * 2 p_{\rm x}, \pi * 2 p_{\rm y}$

Question10

Given below are two statements:

Statement-I: Since fluorine is more electronegative than nitrogen, the net dipole moment of NF_3 is greater than NH_3 .

Statement-II: In NH₃, the orbital dipole due to lone pair and the dipole moment of NH bonds are in opposite direction, but in NF3 the orbital dipole due to lone pair and dipole moments of N-F bonds are in same direction.

In the light of the above statements. Choose the most appropriate from the options given below.

[30-Jan-2024 Shift 2]

Options:

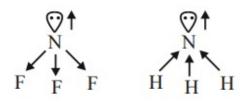
A.

Statement I is true but Statement II is false.

В.

Both Statement I and Statement II are false.

C.


Both statement I and Statement II is are true.

D.

Statement I is false but Statement II is are true.

Answer: B

Solution:

Question11

The linear combination of atomic orbitals to form molecular orbitals takes place only when the combining atomic orbitals

- A. have the same energy
- B. have the minimum overlap
- C. have same symmetry about the molecular axis
- D. have different symmetry about the molecular axis

Choose the most appropriate from the options given below:

[31-Jan-2024 Shift 1]

Options:

A.

A, B, C only

Β.

A and C only

C.

B, C, D only

D.

B and D only

Answer: B

Solution:

* Molecular orbital should have maximum overlap

* Symmetry about the molecular axis should be similar

Question12

The number of species from the following in which the central atom uses sp3 hybrid orbitals in its bonding is_____

 $\mathrm{NH}_3, \mathrm{SO}_2, \mathrm{SiO}_2, \mathrm{BeCl}_2, \mathrm{CO}_2, \mathrm{H}_2\mathrm{O}, \mathrm{CH}_4, \mathrm{BF}_3$

[31-Jan-2024 Shift 1]

Answer: 4

Solution:

```
\begin{array}{l} \mathrm{NH}_{3} \rightarrow sp^{3} \\ \mathrm{SO}_{2} \rightarrow sp^{2} \\ \mathrm{SiO}_{2} \rightarrow sp^{3} \\ \mathrm{BeCl}_{2} \rightarrow sp \\ \mathrm{CO}_{2} \rightarrow sp \\ \mathrm{H}_{2}\mathrm{O} \rightarrow sp^{3} \\ \mathrm{CH}_{4} \rightarrow sp^{3} \\ \mathrm{BF}_{3} \rightarrow sp^{2} \end{array}
```


Which of the following is least ionic?

[31-Jan-2024 Shift 2]

Options:

A. BaCl₂ B. AgCl C.

KCl D.

CoCl₂

Answer: B

Solution:

```
AgCl < CoCl<sub>2</sub> < BaCl<sub>2</sub> < KCl (ionic character)
```

Reason: Ag⁺has pseudo inert gas configuration.

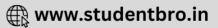
Question14

A diatomic molecule has a dipole moment of 1.2D. If the bond distance is 1Å, then fractional charge on each atom is $__$ × 10^{-1} esu.

(Given $1D = 10^{-18}$ esu cm)

[31-Jan-2024 Shift 2]

Answer: 0


Solution:

```
\mu = 1.2D = q \times d

\Rightarrow 1.2 \times 10^{-10} \operatorname{esu} \text{\AA} = q \times 1\text{\AA}

\therefore q = 1.2 \times 10^{-10} \operatorname{esu}
```


Arrange the bonds in order of increasing ionic character in the molecules. LiF, K_2O , N_2 , SO_2 and CIF_3

[1-Feb-2024 Shift 1]

Options:

A.

```
CIF_3 < N_2 < SO_2 < K_2O < LiF
```

Β.

```
LiF < K_2O < CIF_3 < SO_2 < N_2
```

C.

 $N_2 < SO_2 < CIF_3 < K_2O < LiF$

D.

 $N_2 < CIF_3 < SO_2 < K_2O < LiF$

Answer: C

Solution:

Increasing order of ionic character

 $N_2 < SO_2 < CIF_3 < K_2O < LiF$

Ionic character depends upon difference of electronegativity (bond polarity).

Question16

Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : PH_3 has lower boiling point than NH_3 . Reason (R) : In liquid state NH_3 molecules are associated through vander waal's forces, but PH_3 molecules are associated through hydrogen bonding.

In the light of the above statements, choose the most appropriate answer from the options given below:

[1-Feb-2024 Shift 1]

Options:

A.

```
Both (A) and (R) are correct and (R) is not the correct explanation of (A)
```

B.

(A) is not correct but (R) is correct

C.

Both (A) and (R) are correct but (R) is the correct explanation of (A) $\label{eq:R}$

D.

(A) is correct but (R) is not correct

Answer: D

Solution:

Unlike NH_3 , PH_3 molecules are not associated through hydrogen bonding in liquid state. That is why the boiling point of PH3 is lower than NH_3 .

Question17

The number of molecules/ion/s having trigonal bipyramidal shape is

 PF_5 , BrF_5 , PCl_5 , $[PtCl_4]^{2-}$, BF_3 , $Fe(CO)_5$

[1-Feb-2024 Shift 1]

Answer: 3

Solution:

- PF5, PC15, Fe(CO); Trigonal bipyramidal
- BrF5; square pyramidal
- [PtC1₄]⁻²; square planar
- BF₃; Trigonal planar

Question18

Given below are two statements :

Statement (I) : A π bonding MO has lower electron density above and

below the inter-nuclear asix. Statement (II) : The π^* antibonding MO has a node between the nuclei.

In the light of the above statements, choose the most appropriate answer from the options given below:

[1-Feb-2024 Shift 2]

Options:

A.

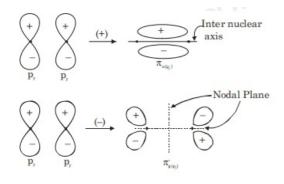
Both Statement I and Statement II are false

В.

Both Statement I and Statement II are true

C.

Statement I is false but Statement II is true


D.

Statement I is true but Statement II is false

Answer: C

Solution:

A π bonding molecular orbital has higher electron density above and below inter nuclear axis

Question19

Select the compound from the following that will show intramolecular hydrogen bonding.

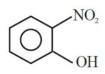
[1-Feb-2024 Shift 2]

Options:

A.

H₂O

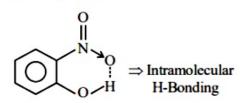
В.



 $\rm NH_3$

C.

C₂H₅OH


D.

Answer: D

Solution:

 H_2O , NH_3 , $C_2H_5OH \Rightarrow$ Intermolecular H-Bonding

Question20

What is the number of unpaired electron(s) in the highest occupied molecular orbital of the following species : $N_2 : N_2^+$; O_2 ; O_2^+ ? [24-Jan-2023 Shift 2]

Options:

- A. 0, 1, 2, 1
- B. 2, 1, 2, 1
- C. 0, 1, 0, 1
- D. 2, 1, 0, 1

Answer: A

Solution:

$$N_2$$

$$\sigma 1 s^{2} \sigma * 1 s^{2} \sigma 2 s^{2} \sigma * 2 s^{2} \pi 2 p_{x}^{2} = \pi 2 p_{y}^{2} \frac{\sigma 2 p_{z}^{2}}{HOMO}$$

$$N_{2}^{+} - \sigma 1 s^{2} \sigma * 1 s^{2} \sigma * 2 s^{2} \sigma * 2 s^{2} \pi 2 p_{x}^{2} = \pi 2 p_{y}^{2} \frac{\sigma 2 p_{z}^{1}}{HOM}$$

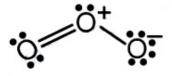
$$O_{2}^{-} - \sigma 1 s^{2} \sigma * 1 s^{2} \sigma 2 s^{2} \sigma * 2 s^{2} \sigma 2 p_{z}^{2}$$

$$\pi 2 p_{x}^{2} = \pi 2 p_{y}^{2}$$

$$\pi * 2 p_{x}^{-1} = \pi * 2 p_{y}^{-1} (HOMO)$$

 $\begin{array}{l} O_2^{+} - \sigma \ s^2 \sigma \ast 1 \ s^2 \sigma 2 \ s^2 \sigma \ast 2 \ s^2 \sigma 2 p_z^{2} \pi 2 p_x^{2} = \pi 2 p_y^{2} \\ \pi \ast 2 p_x^{1} = \pi \ast 2 p_y^{0} (\text{HOMO}) \\ N_2 \Rightarrow 0 \text{ unpaired } e^- \text{ in HOMO} \\ N_2^{+} \Rightarrow 1 \text{ unpaired } e^- \text{ in HOMO} \\ O_2 \Rightarrow 2 \text{ unpaired } e^- \text{ in HOMO} \\ O_2^{+} \Rightarrow 1 \text{ unpaired } e^- \text{ in HOMO} \end{array}$

Question21


The total number of lone pairs of electrons on oxygen atoms of ozone is

[25-Jan-2023 Shift 1]

Answer: 6

Solution:

(Total no, of lone pairs on oxygen atoms = 6

Question22

Statement I :- Dipole moment is a vector quantity and by convention it is depicted by a small arrow with tail on the negative centre and head pointing towards the positive centre.

Statement II :- The crossed arrow of the dipole moment symbolizes the direction of the shift of charges in the molecules.

In the light of the above statements, choose the most appropriate answer from the options given below :-[25-Jan-2023 Shift 2]

Options:

A. Both Statement I and Statement II are correct.

B. Statement I is incorrect but Statement II is correct.

C. Both Statement I and Statement II are incorrect.

D. Statement I is correct but Statement II is incorrect.

Answer: D

Solution:

Statement II : The corssed arrow symbolises the direction of the shift of electron density in the molecule.

Question23

The number of given orbitals which have electron density along the axis is ______ p_x, p_y, p_z, d_{xy}, d_{yz}, d_{xz}, d_z, d_{x²-y²} [25-Jan-2023 Shift 2]

Answer: 5

Solution:

 $p_{x}\text{, }p_{y}\text{, }p_{z}\text{, }d_{z^{2}}\text{\&}d_{x^{2}-v^{2}}$ are axial orbitals.

Question24

According to MO theory the bond orders for O_2^{2-} , CO and NO⁺ respectively, are [29-Jan-2023 Shift 2]

Options:

A. 1,3 and 3

B. 1, 3 and 2

C. 1,2 and 3

D. 2,3 and 3

Answer: A

Solution:

Solution: Theory based.

Question25

Match List I with List II:

List I (Complexes)	List II (Hybridis ation)
(A) [Ni(CO) ₄]	$I. sp^3$
(B) $[Cu(NH_3)_4]^{2+}$	II. dsp ²
(C) $[Fe(NH_3)_6]^{2+}$	III. sp^3d^2
(D) $[Fe(H_2O)_6]^{2+}$	IV. $d^2 sp^3$

[30-Jan-2023 Shift 2]

Options:

A. A - II, B - I, C - III, D - IV

- B. A I, B II, C III, D IV
- C. A II, B I, C IV, D III
- D. A I, B- II, C IV, D III

Answer: D

Solution:

Solution:

For $[Fe(NH_3)_6]^{+2}$, $\Delta_0 < P$, hence the pairing of electrons does not occur in t_{2g} . Therefore complex is outer orbital and its hybridisation is sp^3d^2 .

List I	List II
(Complexes)	(Hybridis ation)
[Ni(CO) ₄]	sp^3
[Cu(NH ₃) ₄] ²⁺	dsp ²
$[Fe(NH_3)_6]^{2+}$	$sp^{3}d^{2}$
$[Fe(H_2O)_6]^{2+}$	$sp^{3}d^{2}$

Question26

Match List I with List II

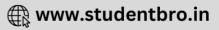
List I	List II
A. XeF ₄	I. See - saw
B. SF ₄	II. Square planar
C. $\mathrm{NH_4}^+$	III. Bent T- shaped
D. BrF ₃	IV. Tetrahedral

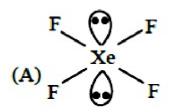
Choose the correct answer from the options given below : [31-Jan-2023 Shift 1]

Options:

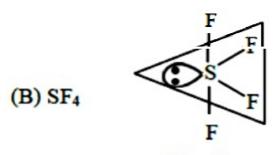
A. A-IV, B-III, C-II, D-I

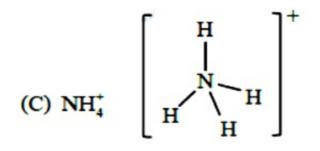
B. A-II, B-I, C-III, D-IV

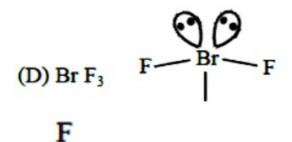

C. A-IV, B-I, C-II, D-III


D. A-II, B-I, C-IV, D-III

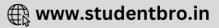
Answer: D


Solution:




Square planer

See-Saw



Tetrahedral

Bent T- Shaped

For OF₂ molecule consider the following:
(A) Number of lone pairs on oxygen is 2 .
(B) FOF angle is less than 104.5°.
(C) Oxidation state of O is -2.
(D) Molecule is bent ' V ' shaped.
(E) Molecular geometry is linear.
Correct options are:
[30-Jan-2023 Shift 1]

Options:

A. C, D, E only

B. B, E, A only

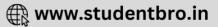
C. A, C, D only

D. A, B, D only

Answer: D

Solution:

F


- Two lone pair one oxygen - Molecule is ' v ' shaped - Bond angle is less than $104.5^{\circ}(102^{\circ})$ - $O \cdot S \cdot of ' O ' is +2$

Question28

Match List I with List II

LIST-I (molecules/ions)	LIST-II (No. of lone pairs of e ⁻ on central atom)
(A) IF ₇	I. Three
(B) ICl ₄ ⁻	II. One
(C) XeF ₆	III. Two
(D) XeF ₂	IV. Zero

Choose the correct answer from the options given below: [30-Jan-2023 Shift 1]

Options:

A. A - II, B - III, C - IV, D - I B. A - IV, B - III, C - II, D - I

C. A - II, B - I, C - IV, D - III

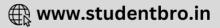
D. A - IV, B - I, C - II, D - III

Answer: B

Solution:

Solution:

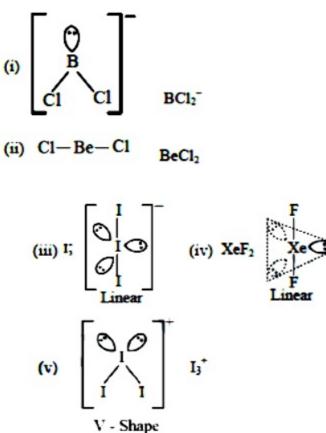
IF ₇	zero lone pair
ICl ₄ ⁻	two lone pair
XeF ₆	one lone pair
XeF ₂	three lone pair

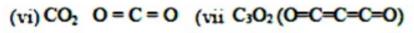


Question29

Amongst the following, the number of species having the linear shape is

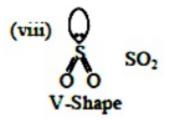
 $\overline{\text{XeF}_{2}, I_{3}^{+}}, C_{3}O_{2}, I_{3}^{-}, CO_{2}, SO_{2}, BeCl \text{ and } BCl_{2}^{\Theta}$

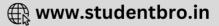




[31-Jan-2023 Shift 2]

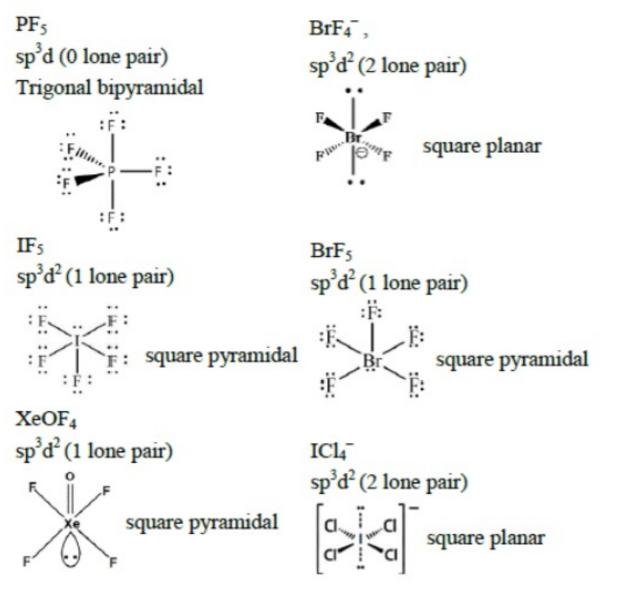
Answer: 5





Linear

Linear



The number of species from the following which have square pyramidal structure is PF₅, BrF₄⁻, IF₅; BrF₅, XeOF₄, ICl₄⁻ [6-Apr-2023 shift 1]

Answer: 3

Solution:

Question31

The number of species having a square planar shape from the following is_____ XeF₄, SF₄, SiF₄, BF₄⁻, BrF₄⁻, [Cu(NH₃)₄]²⁺, [FeCl₄]²⁻, [PtCl₄]²⁻ [6-Apr-2023 shift 2]

Answer: 4

Solution:

 XeF_4 , BrF_4^{-1} , $[Cu(NH_3)_4]^{+2}$, $[PtCl_4]^{-2}$ has square planar shape.

Question32

In an ice crystal, each water molecule is hydrogen bonded to _____ neighbouring molecules. [6-Apr-2023 shift 2]

Answer: 4

Solution:

Solution: In ice each water molecule is hydrogen bonded with four other water molecules.

Question33

Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R.

Assertion A : Butan-1-ol has higher boiling point than ethoxyethane. Reason R : Extensive hydrogen bonding leads to stronger association of molecules. In the light of the above statements, choose the correct answer from the options given below: [8-Apr-2023 shift 1]

Options:

A. Both A and R are true but R is not the correct explanation of A

B. Both A and R are true and R is the correct explanation of A

C. A is false but R is true

D. A is true but R is false

Answer: B

Solution:

Solution:

At comparable molecular mass, alcohol has higher b.p. than ether due to H-bond, because H-bond leads to stronger associated of molecules.

The number of following factors which affect the percent covalent character of the ionic bond is _____ [8-Apr-2023 shift 1]

Options:

A. Polarising power of cation

- B. Extent of distortion of anion
- C. Polarisability of the anion
- D. Polarising power of anion

Answer: C

Solution:

Solution:

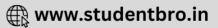
Percent covalent character of the ionic bond

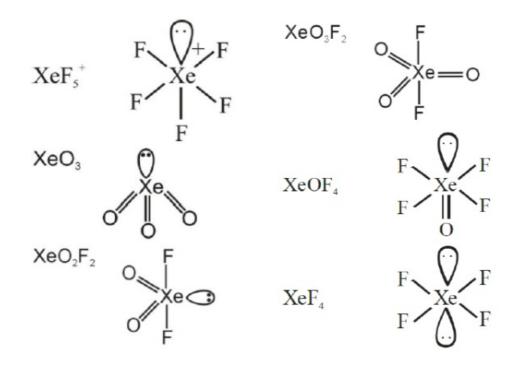
(1) Polarising power of cation

(2) Extent of distortion of anion

(3) Polarisability of the anion

Question35

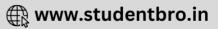

The number of species from the following carrying a single lone pair on central atom Xenon is

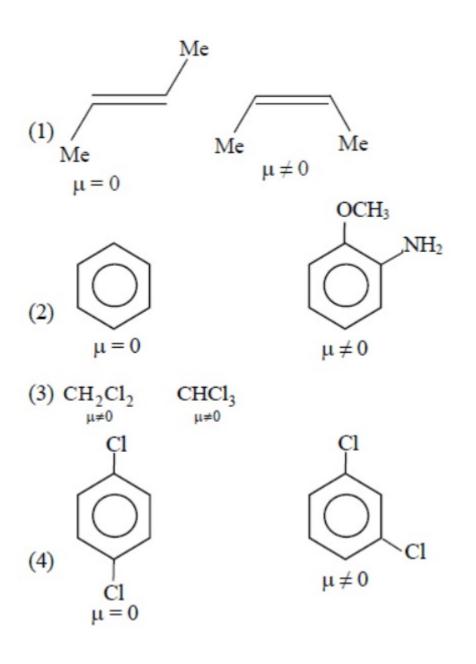

_____XeF₅⁺, XeO₃, XeO₂F₂, XeF₅⁻, XeO₃F₂, XeOF₄, XeF₄ [8-Apr-2023 shift 2]

Answer: 4

Solution:

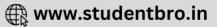
The pair from the following pairs having both compounds with net nonzero dipole moment is [10-Apr-2023 shift 1]


Options:


- A. cis-butene, trans-butene
- B. Benzene, anisidine
- C. CH₂Cl₂, CHCl₃
- D. 1,4-Dichlorohenzene, 1,3-Dichlorobenzene

Answer: C

Solution:


The compound which does not exist is [10-Apr-2023 shift 1]

Options:

A. PbEt₄

- B. BeH_2
- C. NaO_2
- D. $(NH_4)_2BeF_4$
- Answer: C

Solution:

Sodium superoxide is not stable

Question38

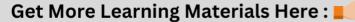
The number of bent-shaped molecule/s from the following is _____ N_3^- , NO_2^- , I_3^- , O_3 , SO_2^- [10-Apr-2023 shift 1]

Answer: 3

Solution:

 N_3 linear NO_2 bent I_3 linear O_3 bent SO_2 bent

Question39


The sum of lone pairs present on the central atom of the interhalogen IF_5 and IF_7 is _____ [10-Apr-2023 shift 1]

Options:

Answer: 1

Solution:

 $IF_5 = 1$ lone pair $IF_7 = 0$ lone pair 1 + 0 = 1

Match list I with list II

List I Species	List II Geometry/ Shape
А. Н ₃ О ⁺	I. Tetrahedral
B. Acetylide anion	II. Linera
C. NH ₄ ⁺	III. Pyramidal
D. C102 ⁻	IV. Bent

Choose correct answer from the options given below: [11-Apr-2023 shift 1]

Options:

A. A-III, B-IV, C-I, D-II

B. A-III, B-IV, C-II, D-I

C. A-III, B-I, C-II, D-IV

D. A-III, B-II, C-I, D-IV

Answer: D

Solution:

Molecule/Ion Hybridisation Shape

H ₃ O⁺	sp ³	$\begin{array}{c} & \left[\begin{array}{c} & & \\ & & \\ H & & \\ H & & \\ H & & \\ \end{array} \right]^{\dagger}$ Pyramidal
Acelylide	sp	linear $\overline{C} \equiv \overline{C}$
\mathbf{NH}_4^*	sp ³	tetrahedral $\begin{bmatrix} H \\ I \\ H^{-N} \\ H \end{bmatrix}^{+}$
CIO ₂	sp ³	Bent $O = CI_{O}$

Which one of the following pairs is an example of polar molecular solids? [11-Apr-2023 shift 2]

Options:

A. SO₂(s), CO₂(s)

B. SO₂(s), NH₂ (s)

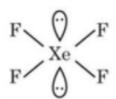
C. MgO(s), SO_2 (s)

D. HCl (s), AlN(s)

Answer: B

Solution:

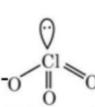
 SO_2 and NH_3 are polar molecules. They are constituent particles of polar molecular solids.



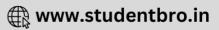
Question42

The maximum number of lone pairs of electrons on the central atom from the following species is _____ ClO_3^- , XeF₄, SF₄ and I₃⁻ [11-Apr-2023 shift 2]

Answer: 3


Solution:

[2 lone pair]


F [1 lone pair]

[3 lone pair]

[1 lone pair]

The bond order and magnetic property of acetylide ion are same as that of [12-Apr-2023 shift 1]

Options:

A. N_2^+

B. O₂⁺

 $C. NO^+$

D. O_2^-

Answer: C

Solution:

Question44

Given below are two statements : Statement I : $SbCl_5$ is more covalent than $SbCl_3$ Statement II : The higher oxides of halogens also tend to be more stable than lower ones. In the light of the above statements, choose the most appropriate answer from the options given below [12-Apr-2023 shift 1]

Options:

A. Statement I is correct but statement II is incorrect

- B. Both statement I and statement II are incorrect
- C. Both statement I and statement II are correct
- D. Statement I is incorrect but statement II is correct

Answer: C

Solution:

 $I \rightarrow SbCl^{+5}$ is more covalent due to sb in higher 0.5 more covalent due to more charge. II \rightarrow Higher oxides of halogen tend to be more stable because higher oxidation states are less reactive and also the size of the atoms are more higher so they are less reactive.

Question45

In which of the following processes, the bond order increases and paramagnetic character changes to diamagnetic one? [13-Apr-2023 shift 1]

Options:

A. $O_2 \rightarrow O_2^+$ B. $O_2 \rightarrow O_2^{2-}$ C. NO \rightarrow NO⁺ D. $N_2 \rightarrow N_2^+$

Answer: C

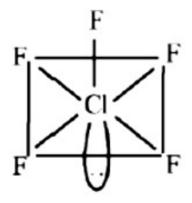
Solution:

NO is paramagnetic with BO = 2.5, NO⁺is diamagnetic with BO = 3

Question46

CIF₅ at room temperature is a: [13-Apr-2023 shift 1]

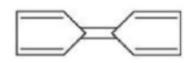
Options:


- A. Colourless liquid with square pyramidal geometry
- B. Colourless gas with trigonal bipyramidal geometry
- C. Colourless gas with square pyramidal geometry
- D. Colourless liquid with trigonal bipyramidal geometry

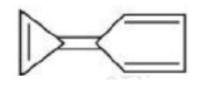
Answer: A

Solution:

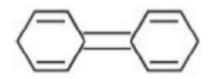
 ClF_5 is colourless liquid.



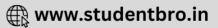
Question47


Among the following compounds, the one which shows highest dipole moment is [13-Apr-2023 shift 1]

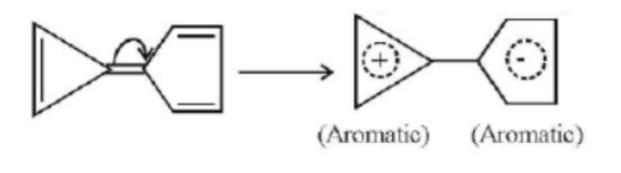
Options:


A.

В.


C.

D.



Answer: B

Solution:

Among the given compounds, the following compound has the highest dipole moment because both the +ve and -ve ends acquire aromaticity.

Question48

Match List I with List II

LISTI	LIST II
A. Weak intermolecular farces of attraction	I. Hexamethylenendiamine + adipic
B. Hydrogen bonding	II. $AlEt_3 + TiCl_4$
C. Heavily branched polymer	III. 2-chloro-1,3-butadiene
D. High density polymer	IV. Phenol + formaldehyde

Choose the correct answer from the options given below : [13-Apr-2023 shift 2]

Options:

A. A-IV, B-I, C-III, D-II

- B. A-III, B-I, C-IV, D-II
- C. A-II, B-IV, C-I, D-III
- D. A-IV, B-II, C-III, D-I
- Answer: B

Solution:

- Hexamethylenediamine on reaction with adipic acid forms Nylon 6, 6 which shows H-bonding due to presence of amide group.

- $AlEt_3 + TiCl_4$ is Ziegler-Natta catalyst used to prepare high density polyethylene.
- 2-chloro-1, 3-butadiene (chloroprene) is monomer of neoprene which is a rubber (an elastomer)
- Phenol formaldehyde forms Bakelite which is heavily branched (cross-linked) polymer

Question49

Given below are two statements : Statement I: SO_2 and H_2O both possess V-shaped structure. Statement II : The bond angle of SO_2 less than that of H_2O In the light of the above statements, choose the most appropriate answer from the options given below : [13-Apr-2023 shift 2]

Options:

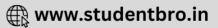
A. Both Statements I and Statement II are incorrect

B. Both Statement I and Statements II are correct

C. Statement I is correct but Statement II is incorrect

D. Statements I is incorrect but Statement II is correct

Answer: C


Solution:

Solution: Both are bent in shape. Bond angle of $SO_2(sp^2)$ is greater than that of $H_2O(sp^3)$ due to higher repulsion of multiple bonds.

Question50

Consider the following statements: (A) NF_3 molecule has a trigonal planar structure. (B) Bond length of N_2 is shorter than O_2

(C) Isoelectronic molecules or ions have identical bond order(D) Dipole moment of HS is higher than that of water molecule. Choose the correct answer from the options given below:[15-Apr-2023 shift 1]

Options:

A. (A) and (B) are correct

B. (C) and (D) are correct

C. (B) and (C) are correct

D. (A) and (D) are correct

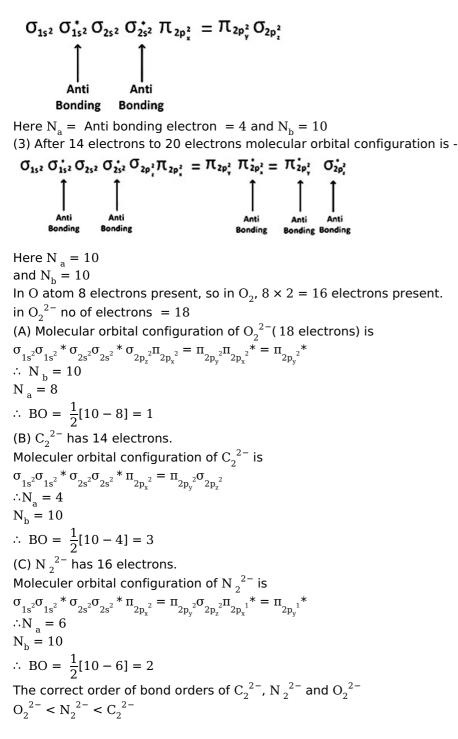
Answer: C

Solution:

 $N_2 + O_2$ $N \equiv NO = O$ B.O. -3 > 2 B.L. 3 < 2Isoelectronic haveldentical bond order

Question51

The correct order of bond orders of C_2^{2-} , N_2^{2-} and O_2^{2-} is, respectively [24-Jun-2022-Shift-2]


Options:

A. $C_2^{2-} < N_2^{2-} < O_2^{2-}$ B. $O_2^{2-} < N_2^{2-} < C_2^{2-}$ C. $C_2^{2-} < O_2^{2-} < N_2^{2-}$ D. $N_2^{2-} < C_2^{2-} < O_2^{2-}$

Answer: B

Solution:

(1) Bond order = $\frac{1}{2}[N_b - N_a]$ N_b = No of electrons in bonding molecular orbital N_a = No of electrons in anti bonding molecular orbital (2) upto 14 electrons, molecular orbital configuration is

Question52

Bonding in which of the following diatomic molecule(s) become(s) stronger, on the basis of MO Theory, by removal of an electron? (A) NO

(B) N₂

- (C) 0_2
- (D) C_{2}^{-}
- (E) B_{2}^{-}

Choose the most appropriate answer from the options given below: [25-Jun-2022-Shift-1]

Options:

A. (A), (B), (C) only

B. (B), (C), (E) only

C. (A), (C) only

D. (D) only

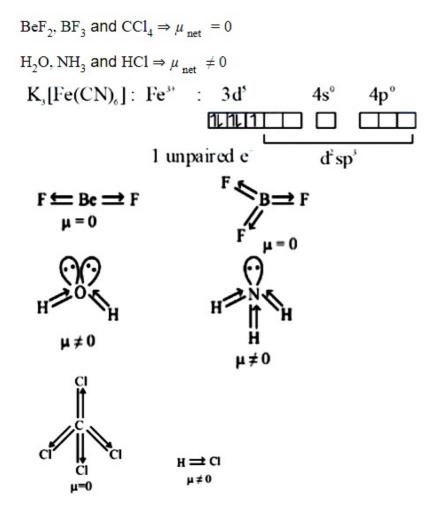
Answer: C

Solution:

Solution:

If an electron is removed from the anti-bonding orbital, then it will tend to increase the bond order. The HOMO in NO and O_2 is antibonding molecular orbital.

 $\bar{\mathrm{Hence}},$ in NO and O_2 bond order will increase on loss of electron.



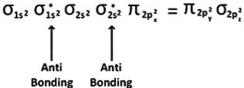
Question53

Amongst BeF_2 , BF_3 , H_2O , NH_3 , CCl_4 and HCl, the number of molecules with non-zero net dipole moment is____ [25-Jun-2022-Shift-2]

Answer: 3

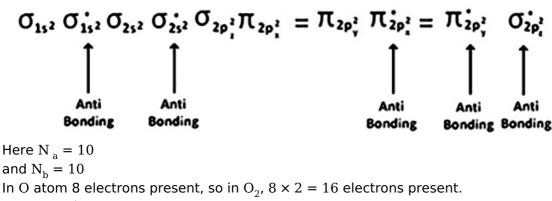
Solution:

Consider the ions/molecule O_2^+ , O_2^- , $O_2^{-2}^-$ For increasing bond order the correct option is : [26-Jun-2022-Shift-1]


Options:

A.
$$O_2^{2-} < O_2^{-} < O_2 < O_2^{+}$$

B. $O_2^{-} < O_2^{2-} < O_2 < O_2^{+}$
C. $O_2^{-} < O_2^{2-} < O_2^{+} < O_2$
D. $O_2^{-} < O_2^{+} < O_2^{2-} < O_2$


Answer: A

Solution:

Solution: (1) Bond strength \propto Bond order (2) Bond length $\propto \frac{1}{\text{Bond order}}$ (3) Bond order = $\frac{1}{2}[N_b - N_a]$ $N_b = \text{No of electrons in bonding molecular orbital}$ $N_a = \text{No of electrons in anti bonding molecular orbital}$ (4) upto 14 electrons, molecular orbital configuration is

Here N_a = Anti bonding electron = 4 and N_b = 10 (5) After 14 electrons to 20 electrons molecular orbital configuration is - - -

Then in O_2^+ no of electrons = 15

in O_2 no of electrons = 17

in O_2^{2-} no of electrons = 18

 \therefore Molecular orbital configuration of O_2 (16 electrons) is

Get More Learning Materials Here : 📕

 $\sigma_{1s^2}\sigma_{1s^2}*\sigma_{2s^2}\sigma_{2s^2}*\sigma_{2p_z^{-2}}\pi_{2p_x^{-2}}=\pi_{2p_y^{-2}}\pi_{2p_x^{-1}}*=\pi_{2p_y^{-1}}$ $\therefore N_a = 6$ $N_{\rm b} = 10$ \therefore BO = $\frac{1}{2}[10 - 6] = 2$ Molecular orbital configuration of O_2^+ (15 electrons) is $\sigma_{1s^2}\sigma_{1s^2}*\sigma_{2s^2}\sigma_{2s^2}*\sigma_{2p_z^{-2}}\pi_{2p_x^{-2}}=\pi_{2p_y^{-2}}\pi_{2p_x^{-1}}*=\pi_{2p_y^{-0}}$ $\therefore N_{b} = 10$ $N_{a} = 5$ \therefore BO = $\frac{1}{2}[10 - 5] = 2.5$ Molecular orbital configuration of $O_2^{-}(17 \text{ electrons})$ is $\sigma_{1s^2}\sigma_{1s^2}*\sigma_{2s^2}\sigma_{2s^2}*\sigma_{2p_z^{-2}}\pi_{2p_x^{-2}}=\pi_{2p_y^{-2}}\pi_{2p_x^{-2}}*=\pi_{2p_y^{-1}}$ $\therefore N_{\rm b} = 10$ $N_{a} = 7$ \therefore BO = $\frac{1}{2}[10 - 7] = 1.5$ Molecular orbital configuration of O_2^{2-} (18 electrons) is $\sigma_{1s^2}\sigma_{1s^2}*\sigma_{2s^2}\sigma_{2s^2}*\sigma_{2p_z^{-2}}\pi_{2p_x^{-2}}=\pi_{2p_y^{-2}}\pi_{2p_x^{-2}}*=\pi_{2p_y^{-2}}*$ $\therefore N_{\rm b} = 10$ $N_{a} = 8$ \therefore BO = $\frac{1}{2}[10 - 8] = 1$ So, correct order of Bond order is $O_2^{2-} < O_2^{-} < O_2 < O_2^{+}$

Question55

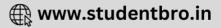
The oxide which contains an odd electron at the nitrogen atom is [26-Jun-2022-Shift-2]

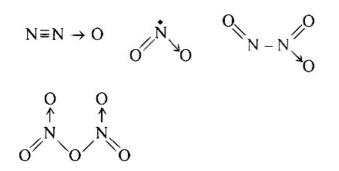
Options:

A. N_2O

B. NO_2

C. N_2O_3


D. N_2O_5


Answer: B

Solution:

Solution: The oxide of nitrogen which contains odd electron is NO_2

Amongst SF₄, XeF₄, CF₄ and H₂O, the number of species with two lone pairs of electrons is _____ [26-Jun-2022-Shift-2]

Answer: 2

Solution:

Solution: Number of lone pair on central atom for $\rm H_2O$ and $\rm XeF_4$ is equal to 2.

Question57

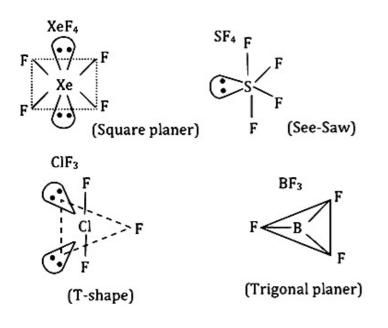
Based upon VSEPR theory, match the shape (geometry) of the molecules in List-I with the molecules in List-II and select the most appropriate option.

	List - I (Shape)		List - II (Molecules)
(A)	T-shaped	(I)	XeF_{4_4}
(B)	Trigonal planar	(II)	SF ₄₄
(C)	Square planar	(111)	CIF ₃₃
(D)	See-saw	(IV)	BF ₃₃

[27-Jun-2022-Shift-1]

Options:

A. (A) - (I), (B) - (II), (C) - (III), (D) - (IV)


B. (A) - (III), (B) - (IV), (C) - (I), (D) - (II)

C. (A) - (III), (B) - (IV), (C) - (I), (D) - (I) D. (A) - (IV), (B) - (III), (C) - (I), (D) - (II)

Answer: B

Solution:

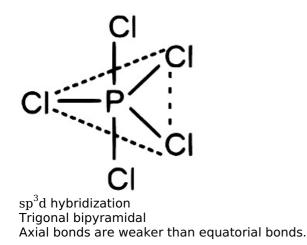
Question58

Identify the incorrect statement for PCl $_5$ from the following. [27-Jun-2022-Shift-2]

Options:

A. In this molecule, orbitals of phosphorous are assumed to undergo $sp^{3}d$ hybridization.

- B. The geometry of PCl $_{\rm 5}$ is trigonal bipyramidal.
- C. PCl $_5$ has two axial bonds stronger than three equatorial bonds.
- D. The three equatorial bonds of PCl $_5$ lie in a plane.


Answer: C

Solution:

Solution: PCl_5 All three equatorial bonds in a plane

The correct order of increasing intermolecular hydrogen bond strength is [27-Jun-2022-Shift-2]

Options:

A. HCN < H₂O < NH₃

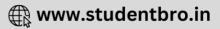
B. HCN < CH_4 < NH_3

C. $CH_4 < HCN < NH_3$

D. $CH_4 < NH_3 < HCN$

Answer: C

Solution:


Question60

The hybridization of P exhibited in PF ₅ is sp^xd ^y. The value of y is____ [28-Jun-2022-Shift-1]

Answer: 1

Solution:

Solution: Due to the high difference in electronegativity of H and N the H-bond strength of NH_3 is highest. There is no H bond in CH_4 . $CH_4 < HCN < NH_3$

Question61

In the structure of SF_4 , the lone pair of electrons on S is in. [28-Jun-2022-Shift-2]

Options:

A. equatorial position and there are two lone pair - bond pair repulsions at 90° .

B. equatorial position and there are three lone pair - bond pair repulsions at 90° .

C. axial position and there are three lone pair - bond pair repulsion at 90° .

D. axial position and there are two lone pair - bond pair repulsion at 90° .

Answer: A

Solution:

Solution:

 $SF_4 \rightarrow sp^3 d$ hybridisation.

The lone pair of electrons on S is in an equatorial position and there are two lone pair-bond pair repulsions at 90° .

Question62

Arrange the following in the decreasing order of their covalent character: (A) LiCl (B) NaCl (C) KCl (D) CsCl Choose the most appropriate answer from the options given below : [29-Jun-2022-Shift-1]

Options:

- A. (A) > (C) > (B) > (D)
- B. (B) > (A) > (C) > (D)
- C. (A) > (B) > (C) > (D)
- D. (A) > (B) > (D) > (C)

Answer: C

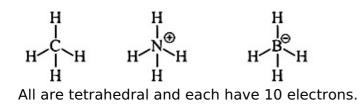
Solution:

Question63

Consider the species CH_4 , NH_4^+ and BH_4^- . Choose the correct option with respect to the these species. [29-Jun-2022-Shift-2]

Options:

A. They are isoelectronic and only two have tetrahedral structures.


B. They are isoelectronic and all have tetrahedral structures.

C. Only two are isoelectronic and all have tetrahedral structures.

D. Only two are isoelectronic and only two have tetrahedral structures.

Answer: B

Solution:

Question64

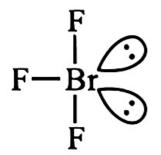
Number of lone pair(s) of electrons on central atom and the shape BrF_3 molecule respectively, are [29-Jun-2022-Shift-2]

Options:

A. 0, triangular planar.

B. 1, pyramidal.

C. 2, bent T-shape.


D. 1, bent T-shape.

Answer: C

Solution:

Steric no. = 5($sp^{3}d$), lone pair = 2 Bent T shape.

Question65

Among the following species N₂, N₂+, N₂⁻, N₂²⁻, O₂, O₂⁺, O₂⁻, O₂²⁻ the number of species showing dimagnesium is [25-Jul-2022-Shift-1]

Answer: 2

Solution:

Those species which have unpaired electrons are called paramagnetic species. And those species which have no unpaired electrons are called diamagnetic species. (1) N $_2$ has 14 electrons. Moleculer orbital configuration of N $_{\rm 2}$ $=\sigma_{1s^2}\sigma_{1s^2}*\sigma_{2s^2}\sigma_{2s^2}*\pi_{2p_x^2}=\pi_{2p_y^2}\sigma_{2p_z^2}$ Here no unpaired electron present, so it is diamagnetic. (2) Moleculer orbital configuration of N $_2^+$ (13 electrons) $= \sigma_{1s^2} \sigma_{1s^2} * \sigma_{2s^2} \sigma_{2s^2} * \pi_{2p_x^2} = \pi_{2p_y^2} \sigma_{2p_z^{-1}}$ Here in N $_2^+$, 1 unpaired electron present, so it is paramagnetic. (3) N_2^{2-} has 16 electrons. Moleculer orbital configuration of N_2^{2-} is $\sigma_{1s^2}\sigma_{1s^2}^* \sigma_{2s^2}^2 \sigma_{2s^2}^* \sigma_{2p_z^2}^2 \pi_{2p_x^2}^2 = \pi_{2p_y^2}^2 \pi_{2p_x^{-1}}^* = \pi_{2p_y^{-1}}^*$ Here 2 unpaired electron present, so it is paramagnetic. (4) N_2^{-} has 15 electrons. Moleculer orbital configuration of N_2^{-1} is $\sigma_{1s^2}\sigma_{1s^2}^*\sigma_{2s^2}^*\sigma_{2s^2}^*\sigma_{2p_z^2}^{-2}\pi_{2p_x^2}^{-2}=\pi_{2p_y^2}^{-2}\pi_{2p_x^{-1}}^{-1}*=\pi_{2p_y^{-0}}^{-1}*$ Here 1 unpaired electron present, so it is paramagnetic. (a) O_2^{2-} has 18 electrons. Moleculer orbital configuration of O_2^{2-} is $\sigma_{1s^2}\sigma_{1s^2} * \sigma_{2s^2}\sigma_{2s^2} * \sigma_{2p_*}^2 \pi_{2p_*}^2 = \pi_{2p_*}^2 \pi_{2p_*}^2 * = \pi_{2p_*}^2 *$ Here is no unpaired electron so it is diamagnetic. (b) O_2 has 17 electrons. Moleculer orbital configuration of O_2^{2-} is $\sigma_{1s^2}\sigma_{1s^2}^*\sigma_{2s^2}^*\sigma_{2s^2}^*\sigma_{2p_z}^{-2}\pi_{2p_z}^{-2} = \pi_{2p_y}^{-2}\pi_{2p_z}^{-2}^* = \pi_{2p_y}^{-1}^*$ Here 1 unpaired electron present, so it is paramagnetic. (c) O_2 has 16 electrons.

Moleculer orbital configuration of O_2 is $\sigma_{1s^2}\sigma_{1s^2} * \sigma_{2s^2}\sigma_{2s^2} * \sigma_{2p_2} \pi_{2p_x}^2 = \pi_{2p_y} \pi_{2p_x}^{-1} * = \pi_{2p_y}^{-1} *$ Here 2 unpaired electron present, so it is paramagnetic. (d) O_2^+ has 15 electrons. Moleculer orbital configuration of O_2^+ is $\sigma_{1s^2}\sigma_{1s^2} * \sigma_{2s^2}\sigma_{2s^2} * \sigma_{2p_2} \pi_{2p_x}^2 = \pi_{2p_y} \pi_{2p_x}^{-1} * = \pi_{2p_y}^{-0} *$ Here 1 unpaired electron present, so it is paramagnetic.

Question66

The total number of acidic oxides from the following list is NO, N $_2$ O, B $_2$ O $_3$, N $_2$ O $_5$, CO, SO $_3$, P $_4$ O $_{10}$ [25-Jul-2022-Shift-2]

Options:

A. 3

B. 4

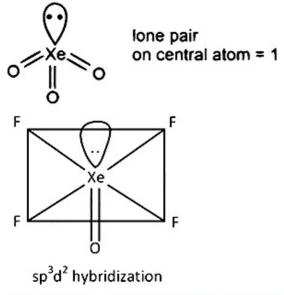
C. 5

D. 6

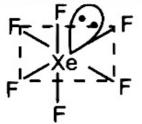
Answer: B

Solution:

Solution: NO, N_2O , CO - neutral oxides B_2O_3 , N_2O_5 , SO₃, P_4O_{10} – acidic oxides

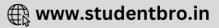

Question67

The sum of number of lone pairs of electrons present on the central atoms of X eO₃, X eOF $_4$ and X eF $_6$, is [25-Jul-2022-Shift-2]


Answer: 3

Solution:

From structure, it is clear that it has five bond pairs and one lone pair.


lone pair on central atom = 1

Question68

Match List-I with List-II :

List I (Compound)	List II (Shape)
(A) BrF ₅	(I)bent
(B) [CrF ₆] ³⁻	(II) square pyramidal
(C) O ₃	(III) trigonal bipyramidal
(D) PCl ₅	(IV) octahedral

Choose the correct answer from the options given below : [26-Jul-2022-Shift-1]

Options:

A. (A) - (I), (B) - (II), (C) - (II), (D) - (IV)B. (A) - (IV), (B) - (II), (C) - (II), (D) - (I)C. (A) - (II), (B) - (IV), (C) - (I), (D) - (III)D. (A) - (II), (B) - (IV), (C) - (II), (D) - (I)

Answer: C

Solution:

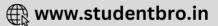
```
Solution:
(A) BrF_5 - square pyramidal
(B) [CrF_6]^{3-} - octahedral
(C) O_3 - bent
(D) PCl_5 - trigonal bipyramidal
```

Question69

Arrange the following in increasing order of their covalent character. A. CaF_2

B. CaCl₂

C. CaBr₂


D. CaI₂

Choose the correct answer from the options given below. [26-Jul-2022-Shift-2]

Options:

A. B < A < C < DB. A < B < C < DC. A < B < D < CD. A < C < B < D

Solution:

From Fajan's rule, for a given metal ion, as the size of anion increases, polarizability of anion increases and hence covalent character of the given ionic compound increases. Hence, the increasing order of covalent character is $CaF_2 < CaCl_2 < CaBr_2 < Cal_2$

Question70

Given below are two statements.

Statement l_2O_2 , Cu^{2+} , and Fe^{3+} are weakly attracted by magnetic field and are magnetized in the same direction as magnetic field. Statement II: NaCl and H₂O are weakly magnetized in opposite direction to magnetic field. In the light of the above statements, choose the most appropriate answer from the options given below. [27-Jul-2022-Shift-1]

Options:

A. Both Statement I and Statement II are correct.

B. Both Statement I and Statement II are incorrect.

C. Statement I is correct but Statement II is incorrect.

D. Statement I is incorrect but Statement II is correct.

Answer: A

Solution:

Solution:

 O_2 , Cu^{2+} and Fe^{3+} have 2,1 and 5 unpaired electrons respectively, so these are the paramagnetic species. Hence, they are attracted by magnetic field.

NaCl and H_2O are the diamagnetic species so they are repelled by the magnetic field.

Question71

Amongst the following, the number of oxide(s) which are paramagnetic in nature is Na₂O, KO₂, NO₂, N₂O, ClO₂, NO, SO₂, Cl₂O [27-Jul-2022-Shift-1]

Answer: 4

Solution:

Solution: Paramagnetic species: KO_2 , NO_2 , ClO_2 , NODiamagnetic species are: Na_2O , N_2O , SO_2 , Cl_2O

Question72

According to MO theory, number of species/ions from the following having identical bond order is _____. CN^- , NO^+ , O_2 , O_2^+ , O_2^{2+} [27-Jul-2022-Shift-1]

Answer: 3

Solution:

Solution:

 CN^- , NO^+ and O_2^{2+} have bond order of 3 O_2 has bond order of 2 O_2^+ has bond order of 2.5 \therefore 3 species have similar bond order.

Question73

Match List - I with List - II.

List I	List II
$(A)\psi_{\mathrm{MO}} = \psi_{\mathrm{A}} - \psi_{\mathrm{B}}$	(I)Dipole moment
(B) $\mu = Q \times r$	(II)Bonding molecular orbital
(C) $\frac{N_b - N_a}{2}$	(III)Anti-bonding molecular orbital
$(D)\psi_{\mathrm{MO}} = \psi_{\mathrm{A}} + \psi_{\mathrm{B}}$	(IV)Bond order

Choose the correct answer from the options given below : [27-Jul-2022-Shift-2]

Options:

A. (A) - (II), (B) - (I), (C) - (IV), (D) - (III) B. (A) - (III), (B) - (IV), (C) - (I), (D) - (II) C. (A) - (III), (B) - (I), (C) - (IV), (D) - (II) D. (A) - (III), (B) - (IV), (C) - (II), (D) - (I)

Answer: C

Solution:

$$\begin{split} \textbf{Solution:} \\ \Psi_{A} - \Psi_{B} &= \Psi_{M\,O} \text{ is anti-boding molecular orbital} \\ \mu &= Q \times r \text{ -is dipole moment} \\ \frac{N_{b} - N_{a}}{2} &= \text{ bond order} \\ \Psi_{A} + \Psi_{B} &= \Psi_{M\,O} \text{ is bonding molecular orbital.} \end{split}$$

Question74

The number of molecule(s) or ion(s) from the following having nonplanar structure is ______. NO_3^- , H_2O_2 , BF_3 , PCl_3 , XeF_4 , SF_4 , XeO_3 , PH_4^+ , SO_3 , $[Al(OH)_4]^-$ [27-Jul-2022-Shift-2]

Answer: 6

Solution:

 NO_3^{Θ} → Trigonal planar (Planar) H_2O_2 → Open book (Non-planar) BF_3 → Trigonal planar (Planar) PCl_3 → Pyramidal (Non-planar) XeF_4 → Square planar (Planar) SF_4 → See-Saw (Non-planar) XeO_3 → Pyramidal (Non-planar) PH_4^{Θ} → Tetrahedral (Non-planar) SO_3 → Trigonal planar (Planar) [Al(OH)₄]⁻ → Tetrahedral (Non-planar)

The number of paramagnetic species among the following is _____. B₂, Li₂, C₂, C₂⁻, O₂²⁻, O₂⁺ and He₂⁺ [28-Jul-2022-Shift-1]

Answer: 4

Solution:

Those species which have unpaired electrons are called paramagnetic species. And those species which have no unpaired electrons are called diamagnetic species. B_2 has 10 electrons. Molecular orbital configuration of B_2 is $\sigma_{1s^2}\sigma_{1s^2} * \sigma_{2s^2}\sigma_{2s^2} * \pi_{2p_1^{-1}} = \pi_{2p_1^{-1}}$ Here two unpaired electrons present. So it is paramagnetic. O_2^{2-} has 18 electrons. Moleculer orbital configuration of O_2^{2-} is $\sigma_{1s^2}\sigma_{1s^2} * \sigma_{2s^2}\sigma_{2s^2} * \sigma_{2p_z^2}\pi_{2p_x^2} = \pi_{2p_y^2}\pi_{2p_x^2}^* = \pi_{2p_y^2}^*$ Here is no unpaired electron so it is diamagnetic. O_2^+ has 15 electrons. Moleculer orbital configuration of O₂⁺is $\sigma_{1s^2}\sigma_{1s^2} * \sigma_{2s^2}\sigma_{2s^2} * \sigma_{2p_z^{-2}}\pi_{2p_x^{-2}} = \pi_{2p_v^{-2}}\pi_{2p_x^{-1}} * = \pi_{2p_v^{-0}} *$ Here 1 unpaired electron present, so it is paramagnetic. C_2 has 12 electrons. Moleculer orbital configuration of C_2 $= \sigma_{1s^2}^{}\sigma_{1s^2}^{}*\sigma_{2s^2}^{}\sigma_{2s^2}^{}*\pi_{2p_v^2}^{} = \pi_{2p_v^2}^{}$ Here no unpaired electron present, so it is diamagnetic. C₂⁻has 13 electrons. Moleculer orbital configuration of C₂⁻is $\sigma_{1s^2}\sigma_{1s^2}^* \sigma_{2s^2}^* \sigma_{2s^2}^* \pi_{2p_x^2}^* = \pi_{2p_y^2}^* \sigma_{2p_z^{-1}}^*$ Here 1 unpaired electron present, so it is paramagnetic. Li_2 has 6 electrons. $\operatorname{Li}_{2} = \sigma_{1s^{2}} \sigma_{1s^{2}} * \sigma_{2s^{2}}$ Here no unpaired electron present, so it is diamagnetic. Configuration of He₂⁺(3 electrons) is = $\sigma_{1,2}\sigma_{1,1}^{**}$ Here 1 unpaired electron present, so it is paramagnetic.

Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R

Assertion A : Zero orbital overlap is an out of phase overlap.

Reason R: It results due to different orientation \/ direction of approach of orbitals.

In the light of the above statements, choose the correct answer from the options given below [28-Jul-2022-Shift-2]

Options:

A. Both A and R are true and R is the correct explanation of A

B. Both A and R are true but R is NOT the correct explanation of A

C. A is true but R is false

D. A is false but R is true

Answer: A

Solution:

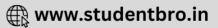
Zero overlapping is something in which there is no overlapping between two orbitals. The first condition is that the two orbitals should not be symmetrical and the second condition is that both orbitals should be in different planes.

Question77

Number of lone pairs of electrons in the central atom of SCl_2 , O_3 , ClF_3 and SF_6 , respectively, are : [29-Jul-2022-Shift-1]

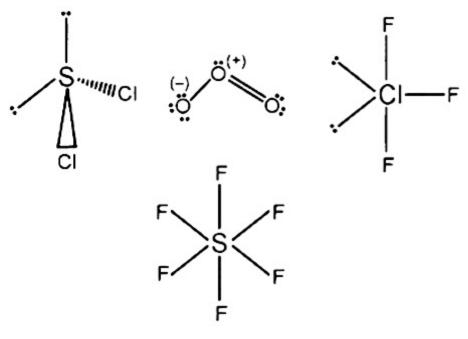
Options:

A. 0, 1, 2 and 2


B. 2, 1, 2 and 0

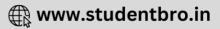
C. 1, 2, 2 and 0

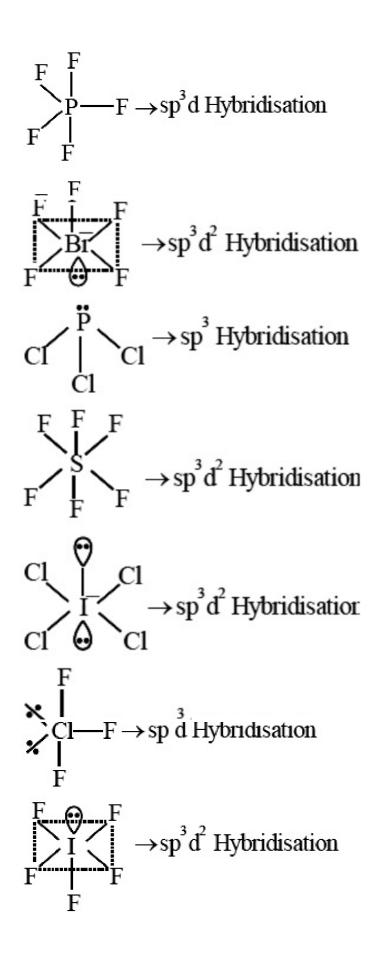
D. 2, 1, 0 and 2


Answer: B

Solution:

The number of lone pair of electrons in the central atom of SCl_2 , O_3 , ClF_3 and SF_6 are 2, 1, 2 and 0 respectively Their structures are as,


Question78


Consider, PF_5 , BrF_5 , PCl_3 , SF_6 , $[ICl_4]^-$, ClF_3 and IF_5 . Amongst the above molecule(s)/ion(s), the number of molecule(s)/ion(s) having sp³d² hybridisation is _____. [29-Jul-2022-Shift-2]

Answer: 4

Solution:

Match List-I with List-II

	List-I(Molecule)		List-II(Bond order)
Α.	Ne ₂	<mark>(i)</mark>	1
B.	N 2	(ii)	2
C.	F_2	(iii)	0
D.	<i>O</i> ₂	(iv)	3

Choose the correct answer from the options given below. [26 Feb 2021 Shift 2]

Options:

A. (A-iii), (B-iv), (C-i), (D-ii)

- B. (A-i), (B-ii), (C-iii), (D-iv)
- C. (A-ii), (B-i), (C-iv), (D-iii)
- D. (A-iv), (B-iii), (C-ii), (D-i)

Answer: A

Solution:

(A) N
$$e_2(20e^-)$$

 $\Rightarrow \sigma 1s^2 \sigma^* 1s^2 \sigma 2s^2 \sigma^* 2s^2 \sigma 2p_z^2 \pi 2p_x^2 \pi 2p_y^2 \pi^* 2p_x^2 \pi^* 2p_y^2 \sigma^* 2p_z^2$
Bond order $= \frac{10 - 10}{2} = 0 \Rightarrow$ (iii) of List-II.
(B) N $_2(14e^-)$
 $\Rightarrow \sigma 1s^2 \sigma^* 1s^2 \sigma 2s^2 \sigma^* 2s^2 \pi 2p_x^2$, $\pi 2p_y^2 \sigma 2p$

Bond order $= \frac{10-4}{2} = 3 \Rightarrow$ (iv) of List-II. (c) $F_2(18e^-)$ $\Rightarrow \sigma 1s^2 \sigma^* 1s^2 \sigma 2s^2 \sigma^* 2s^2 \sigma 2p_z^2 \pi 2p_x^2 \pi 2p_y^2 \pi^* 2p_y^2 \pi^* 2$ Bond order $= \frac{10-8}{2} = 1 \Rightarrow$ (i) of List-II. (d) $O_2(16e^-)$ $\Rightarrow \sigma 1s^2 \sigma^* 1s^2 \sigma 2s^2 \sigma^* 2s^2 \sigma 2p_z^2 \pi 2p_x^2 \pi 2p_y^2 \pi^* 2p_x^{-1} \pi^* 2p_y^{-1}$ Bond order $= \frac{10-6}{2} = 2 \Rightarrow$ (ii) of List-II. The correct matching is option (a). No. of electrons in antibonding MO (Molecular Orbital) Note : Bond order $= \frac{-$ No. of electrons in bonding MO $= \frac{-$ No. of electrons in bonding MO

Question80

According to molecular orbital theory, the species among the following that does not exist is [25 Feb 2021 Shift 1]

Options:

A. O_2^{2-}

B. He_2^-

C. Be_2

D. He_2^+

Answer: C

Solution:

Solution:

According to Molecular Orbital Theory (MOT), electronic configuration and their bond order of given options are as follows - $O_2^{2^-} = \sigma 1 s^2$, $\sigma^* 1 s^2$, $\sigma 2 s^2$, $\sigma^* 2 s^2$, $\sigma 2 p_z^2$, $\pi 2 p_x^2$, $\pi^2 2 p_x^2$, $\pi^* 2 p_y^2$ [No. of bonding electrons Bond order = $r = \frac{-\text{ No. of antibonding electrons]}}{2}$

 $= \frac{10-8}{2} = \frac{2}{2} = 1$ $- H e_2^{-} = \sigma 1 s^2, \sigma^* 1 s^2, \sigma 2 s^1$ Bond order $= \frac{3-2}{2} = \frac{1}{2} = 0.5$ $- Be_2 = \sigma 1 s^2, \sigma^* 1 s^2, \sigma 2 s^2, \sigma^* 2 s^2$ Bond order $= \frac{4-4}{2} = 0$ $- H e_2^{+} = \sigma 1 s^2, \sigma^* 1 s^1$ Bond order $= \frac{2-1}{2} = \frac{1}{2} = 0.5$ If bond order of chemical species is zero then that chemical species does not exist. Therefore, Be₂ does not exist.

Question81

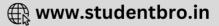
Which of the following are isostructural pairs? A. SO_4^{2-} and CrO_4^{2-} B. $SiCl_4$ and $TiCl_4$ C. N H₃ and N O₃⁻ D. BCl₃ and BrCl₃ [24feb2021shift1]

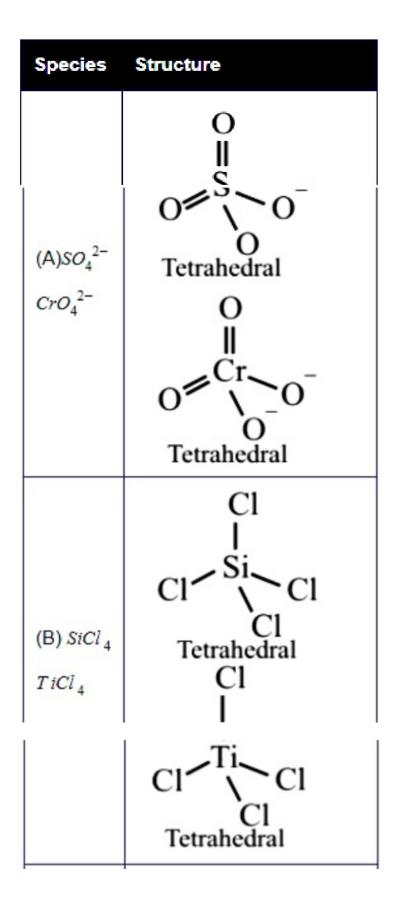
Options:

A. C and D only

B. A and B only

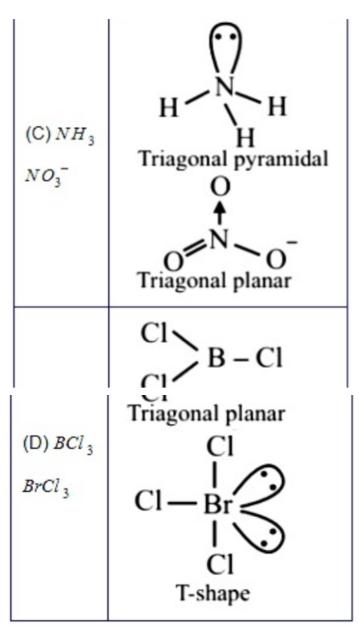
C. A and C only


D. B and C only


Answer: B

Solution:

Isostructural means same structure.



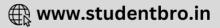
Given below are two statements: One is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) Dipole-dipole interactions are the only non-covalent interactions, resulting in hydrogen bond formation. Reason (R) Fluorine is the mostelectronegative element and hydrogenbonds in HF are symmetrical. In the light of the above statements, choose the most appropriate answer from the options given below. [26 Feb 2021 Shift 1]

Options:

A. A is false but R is true.

B. Both A and R are true and R is the correct explanation of A.


C. A is true R is false.

D. Both A and R are true but R is not the correct explanation of A.

Answer: A

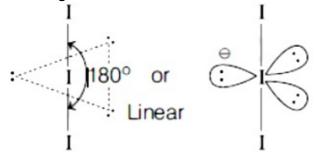
Solution:

Assertion is false but Reason is true. Corrected Assertion Diple-dipole interactions are purely covalent interactions of dipolar covalent bonds. Ends of dipoles of a polar covalent bonds possess partial charges (δ^+ and δ^-) which are less than unit electronic charge, $e = 1.6 \times 10^{-19}$ C.

Question83

The correct shape and I-I-I bond angles respectively in I ₃⁻, ion are [24 Feb 2021 Shift 2]

Options:


- A. distorted trigonal planar, 135° and 90°
- B. T-shaped, 180° and 90°
- C. Trigonal planar, 120°
- D. Linear, 180°

Answer: D

Solution:

Hybridisation of central I in I $_3$ ⁻is sp³d with 3 lone pair and 2 bond pair. Shape Linear Lone pair 3 lone pair

Bond angle 180° (for linear molecule)

Question84

A hard substance melts at high temperature and is an insulator in both solid and in molten state.

This solid is most likely to be a

/an

[18 Mar 2021 Shift 2]

Options:

A. ionic solid

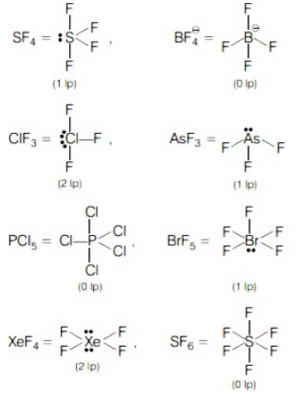
B. molecular solid

C. metallic solid

D. covalent solid

Solution:

Covalent or network solid have very high melting point and they are insulators in their solid and molten form. If a substance is an insulator in both solid and molten phases, then it cannot be ionic or metallic solid. If the melting point is higher, then it cannot be a molecular solid. \therefore It should be covalent network solid.


Question85

The number of species below that have two lone pairs of electrons in their central atom is (Round off to the nearest integer) SF $_4$, BF $_4^-$, CI F $_3$, AsF $_3$, PCl $_5$, BrF $_5$, X eF $_4$, SF $_6$ [18 Mar 2021 Shift 2]

Answer: 2

Solution:

Number of lone pairs on central atom in given compounds are as follows

Hence, two (lone pair) Ip on central atom is CI F $_3$ and X eF $_4$.

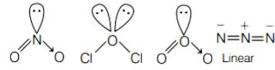
Question86

Amongst the following, the linear species is [17 Mar 2021 Shift 2]

Options:

A. N O_2

B. Cl_2O


C. O₃

D. N₃⁻

Answer: D

Solution:

N₃⁻is linear species.

Bent shape Bent shape Bent shape

Hybridisation = Number of sigma bond + number of lone pairs + number of coordinate bonds. Hybridisation of N in NO = 1 + 1 + 1 = 3. So, hybridisation is sp^2 and structure is bent or V-shape. Hybridisation of O in OCl₂ = 2 + 2 = 4. So, hybridisation is sp^3 and structure is bent or V-shape. Hybridisation of O in O₃ = 1 + 1 + 1 = 3. So, hybridisation is sp^2 and structure is bent or V-shape. linear.

Question87

A central atom in a molecule has two lone pairs of electrons and forms three single bonds. The shape of this molecule is [17 Mar 2021 Shift 1]

Options:

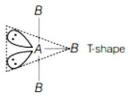
A. see-saw

B. planar triangular

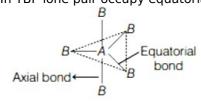
C. T-shaped

D. trigonal pyramidal

Answer: C


Solution:

Solution:


2 lone pair +3 bond pair Stearic number = 5 So, general formula is AB_3L_2 . (Here, L = number of lone pair.) Hybridisation = sp^3d . So, the shape is T- shape

Note Geometry of the compound having sp^3d hybridisation should to tetragonal bipyramidal (TBP) according to VSEPR theory. But due to two lone pair, geometry is distorted. In TBP lone pair occupy equatorial position.

Question88

Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) The H - O - H bond angle in water molecule is 104.5°. Reason (R) The lone pair - lone pair repulsion of electrons is higher than the bond pair - bond pair repulsion. [16 Mar 2021 Shift 1]

Options:

A. A is false but R is true.

B. Both A and R are true, but R is not the correct correct explanation of A.

C. A is true but R is false.

D. Both A and R are true, and R is the correct explanation of A.

Answer: D

Solution:

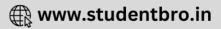
Solution:

Hybridisation of ' O' in H ₂O is sp³ as it is having two lone pair and two sigma bond. Bond angle of sp³ hybridised compound should be 109.5°.

But in case of water, it is only 104.5° due to repulsion between the lone pairs. Lone pair-lone pair repulsion is higher than bond pair-bond pair repulsion. (VSEPR Theory)

ion > bp-bp ion Repulsion

So, both A and R are true and R is the correct explanation of A.


Question89

The total number of electrons in all bonding molecular orbitals of O_2^{2-}

is

(Round off to the nearest integer)

[27 Jul 2021 Shift 2]

Answer: 10

Solution:

```
Solution:
M. O. Configuration of O_2^{2^-} ( (18e)
\sigma 1s^2 \alpha 1s^2 \sigma 2s^2 \cdot \sigma 2s^2 \sigma 2p_z^2 \pi 2p_x^2 = \pi 2p_y^2
\pi 2p_x^2 = \pi 2p_y^2
Total B.M.O electrons = 10
```

Question90

The difference between bond orders of CO and NO^{\oplus} is $\frac{x}{2}$ where x =

(Round off to the Nearest Integer) [27 Jul 2021 Shift 1]

Answer: 0

Solution:

Bond order of CO = 3 $\sigma 1s^2 \sigma * 1s^2 \sigma 2s^2 \sigma * 2s^2 \sigma 2p_z^2 \pi 2p_x^2 \pi 2p_y^2$ B. O. = $\frac{10-4}{2} = 3$ NO⁺: B. O. = $\frac{8-2}{2} = 3$ Difference = 3 - 3 = 0

Question91

In the following the correct bond order sequence is: [25 Jul 2021 Shift 2]

Options:

A.
$$O_2^{2-} > O_2^+ > O_2^- > O_2$$

B. $O_2^+ > O_2^- > O_2^{2-} > O_2$

C. $O_2^+ > O_2^- > O_2^{-2-}$ D. $O_2^- > O_2^{-2-} > O_2^{+2-}$

Answer: C

Solution:

Solution: O_2 (16 electrons) $\sigma_{1s}^2, \sigma_{1s}^{*2}, \sigma_{2s}^2, \sigma_{2s}^{*2}, \sigma_{2p_z}^2$ $\pi_{2p_x}^2 = \pi_{2py}^2, \pi_{2p_x}^{*1} = \pi_{2py}^{*1}, \sigma_{2p_z}^2$

Bond order of $O_2 \Rightarrow 2$ Bond order of $O_2^- \Rightarrow 1.5$ Bond order of $O_2^{2-} \Rightarrow 1$ Bond order of $O_2^{+} \Rightarrow 2.5$

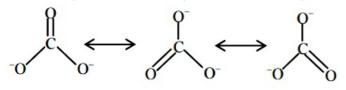
Question92

Identify the species having one π-bond and maximum number of canonical forms from the following: [25 Jul 2021 Shift 2]

Options:

A. SO₃

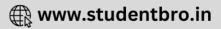
B. O₂


C. SO_2

D. CO₃²⁻

Answer: D

Solution:


Solution: Among SO₃, O₂, SO₂ and CO₃²⁻, only O₂ and CO₃²⁻ has only one π -bond

Question93

The set in which compounds have different nature is : [20 Jul 2021 Shift 1]

Options:

A. B(OH)₃ and H $_3PO_3$

B. B(OH)₃ and Al (OH)₃

C. N aOH and Ca(OH) $_{\rm 2}$

D. Be(OH) $_{\rm 2}$ and Al (OH) $_{\rm 3}$

Answer: B

Solution:

Solution:

1) B(OH) $_3$ acidic and H $_3PO_3$ acidic

2) B(OH)₃ acidic and Al (OH)₃ amphoteric

3) N aOH basic and Ca(OH)₂ basic

4) Be(OH) $_{\rm 2}$ amphoteric and Al (OH) $_{\rm 3}$ amphoteric

Question94

Match List-I with List-II :

List-I (Species)	List-II (Hybrid Orbitals)
(a) <i>SF</i> ₄	(i) sp^3d^2
(b) <i>IF</i> 5	(ii) d^2sp^3
(c) <i>NO</i> ₂ ⁺	(iii) sp ³ d
(d) NH_4^+	(iv) sp^3
	(v) sp

Choose the correct answer from the options given below : [22 Jul 2021 Shift 2]

Options:

A. (a)-(i), (b)-(ii), (c)-(v) and (d)-(iii)

B. (a)-(ii), (b)-(i), (c)-(iv) and (d)-(v)

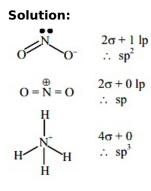
C. (a)-(iii), (b)-(i), (c)-(v) and (d)-(iv)

D. (a)-(iv), (b)-(iii), (c)-(ii) and (d)-(v)

Answer: C

Solution:

(a) SF $_4$ - sp³d hybridisation (b) IF $_5$ - sp³d² hybridisation (c) NO₂⁺-sp hybridisation (d) NH $_4^{+}$ - sp³ hybridisation


Question95

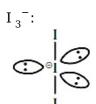
The hybridisations of the atomic orbitals of nitrogen in NO_2^- , NO_2^+ and NH_4^+ respectively are. [20 Jul 2021 Shift 2]

Options:

A. sp³, sp² and sp
B. sp, sp ² and sp ³
C. sp³, sp and sp²
D. sp², sp and sp³
Answer: D

Solution:

Question96


The number of lone pairs of electrons on the central I atom in I_3^- is

[20 Jul 2021 Shift 1]

Answer: 3

Solution:

The number of lone pairs of electron on the central atom is 3.

Question97

The bond order and magnetic behaviour of O_2^- ion are, respectively [26 Aug 2021 Shift 2]

Options:

- A. 1.5 and paramagnetic
- B. 1.5 and diamagnetic
- C. 2 and diamagnetic
- D. 1 and paramagnetic

Answer: A

Solution:

 $O_2^{-}(\text{Total electrons} = 17) = \sigma_1^2 (\sigma_1^2 \sigma_2^2 \sigma_2^$

Question98

The interaction energy of London forces between two particles is proportional to r^x, where r is the distance between the particles. The value of x is [26 Aug 2021 Shift 2]

Options:

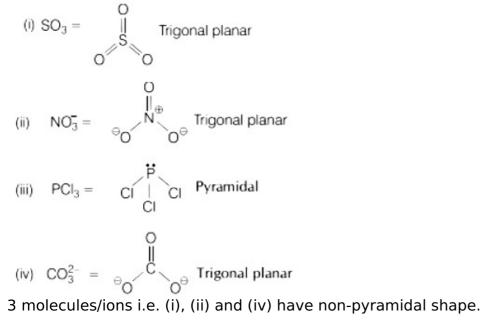
- A. 3
- В. **-**З
- C. -6
- D. 6

Answer: C

Solution:

In London forces, interaction energy in inversely proportional to the sixth power of the distance between two interacting particles

```
\left(\frac{1}{r^6} \text{ or } .r^{-6}\right)
\therefore \text{ x is -6.}
```


Question99

The number of species having non-pyramidal shape among the following is (i) SO₃(ii) NO₃⁻(iii) PCl₃(iv) CO₃²⁻ [27 Aug 2021 Shift 2]

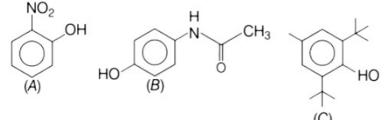
Answer: 3

Solution:

The structure of the given compounds are as follows :

Question100

According to molecular orbital theory, the number of unpaired electron(s) in $O_2^{2^-}$ is [31 Aug 2021 Shift 2]


Answer: 0

Solution:

Solution: In $O_2^{2^-}$, 18 electrons are present. Configuration is given by $\sigma 1s^2$, $\sigma * 1s^2$, $\sigma 2s^2$, $\sigma * 2s^2$, $\sigma 2p_z^2$, $\pi 2p_x^2 = \pi 2p_y^2$ $\pi * 2p_x^2 = \pi * 2p_y^2$, $\sigma * 2p_z^0$ So, number of unpaired electrons in $O_2^{2^-} = 0$.

Question101

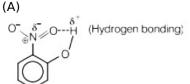
The compound/s which will show significant intermolecular H-bonding is/are

[27 Aug 2021 Shift 2]

Options:

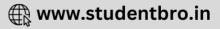
A. (B) only

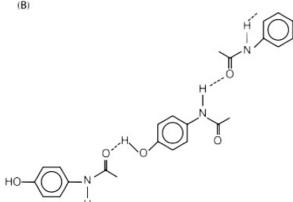
B. (C) only


C. (A) and (B)

D. (A),(B) and (C)

Answer: A


Solution:


Solution:

In o-nitrophenol intramolecular hydrogen bonding takes place.

Extensive H-bonding is observed in this case as two H-atoms bonded to strongly electronegative atoms (nitrogen, oxygen) are present. H-bonding occurs when H-bonded to strongly electronegative atoms exists in the vicinity of other electronegative atoms possessing lone pairs of electron. (C)

Here, only one hydrogen atom bonded to electronegative oxygen atom is present. So, intermolecular H-bonding is present but not so extensive. So, option (a) is correct.

Question102

The spin-only magnetic moment value of B_2^+ species is × 10^{-2} BM. (Nearest integer) [Given, $\sqrt{3} = 1.73$] [1 Sep 2021 Shift 2]

Answer: 173

Solution:

Solution: Spin only mangnetic moment is given as $\mu_{\rm S} = \sqrt{n(n+2)} \, {\rm BM}$ where, n = number of unpaired electrons Electronic configuration of $\operatorname{mathrm} B_2^+$ is as follows $B_2^{+} = \sigma 1 s^2$, $\sigma * 1 s^2$, $\sigma 2 s^2$, $\sigma * 2 s^2$, $\pi 2 p_v^{-1} = \pi 2 p_z^{-0}$ ${ \ \dot{\cdot} \ } {B_2}^+$ has one unpaired electron, $\mu = \sqrt{1(1+2)} = \sqrt{3} = 1.73 \,\text{BM}$ $= 173 \times 10^{-2} BM$ $\therefore x \times 10^{-2} = 173 \times 10^{-2}$ ∴ x = 173 Hence, answer is 173.

Question103

(B)

The dipole moments of CCl $_4$, CH Cl $_3$ and CH $_4$ are in the order: [Jan. 07, 2020 (I)]

Options:

A. CH Cl $_3$ < CH $_4$ = CCl $_4$

B. CCl₄ < CH₄ < CH Cl₃

C. CH $_4$ < CCl $_4$ < CH Cl $_3$

D. CH $_4$ = CCl $_4$ < CH Cl $_3$

Answer: D

Solution:

Solution:

Hint: Dipole moment is the separation of two charges by a distance. When one atom is more electronegative than the other, it tries to pull the shared electrons towards itself. Hence, greater the electronegativity of one atom than the other, greater will be the length and more dipole moment. So dipole moment order is: $CH_4 = CCl_4 < CH Cl_3$

Question104

If the magnetic moment of a dioxygen species is 1.73B . M , it may be: [Jan. 09,2020 (I)]

Options:

A. O_2^- or O_2^+

B. $O_2 \text{ or } O_2^+$

C. O_2 or O_2^-

D. O_2 , O_2^- or O_2^+

Answer: A

Solution:

```
Solution:
```

```
\begin{split} \mu &= \sqrt{n(n+2)} \text{ B.M.} \\ 1.73 &= \sqrt{n(n+2)} \\ n &= 1 \\ O_2^{-1} &= \sigma 1 s^2 \sigma^* 1 s^2 \sigma 2 s^2 \sigma^* 2 s^2 \sigma 2 p_z^{-2} \pi 2 p_x^{-2} \\ &= \pi 2 p_y^{-2} \pi^* 2 p_x^{-1} = \pi^* 2 p_y^{-0} \\ O_2^{-1} &= \sigma 1 s^2 \sigma^* 1 s^2 \sigma 2 s^2 \sigma^* 2 s^2 \sigma 2 p_z^{-2} \pi 2 p_x^{-2} \\ &= \pi 2 p_y^{-2} \pi^* 2 p_x^{-2} = \pi^* 2 p_y^{-1} \end{split}
```


The bond order and the magnetic characteristics of CN $^-$ are: [Jan. 07, 2020 (II)]

Options:

A. $2\frac{1}{2}$, diamagnetic

B. 3 , diamagnetic

C. 3 , paramagnetic

D. 2 $\frac{1}{2}$, paramagnetic

Answer: B

Solution:

Solution:

Total number of electrons in CN $^-$ = 6 + 7 + 1 = 14 \therefore Molecular orbital distribution

 $\sigma l s^{2} \sigma^{*} 1 s^{2} \sigma 2 s^{2} \sigma^{*} 2 s^{2} \begin{bmatrix} \pi 2 p x^{2} \\ \pi 2 p y^{2} \end{bmatrix} \sigma 2 p_{z}^{2}$ $\therefore \text{ Bond order } = \frac{10 - 4}{2} = 3$

CN is diamagnetic because all electrons are paired.

Question106

The compound that has the largest H - M - H bond angle (M = N, S, C), is [Sep. 05,2020 (II)]

Options:

A. H ₂O

B. N H ₃

C. H $_2$ S

D. CH $_4$

Answer: D

Solution:

Solution:

H $_2O - 104.5^{\circ}$ (sp³ with 2 lone pair at O) N H $_3 - 107^{\circ}$ (sp³ with 1 lone pair at N) CH $_4 - 109.5^{\circ}$ (sp³)

 $H_2S - 92^{\circ}(sp^3 \text{ with } 2 \text{ lone pair at } O)$

Lone pair-bond pair repulsion in H $_2$ S will increase because 'S' has lower electronegativity than 'O'. So there will be lesser electron density on 'S' and thus H - S - H bond angle will be smaller than H $_2$ O.

Question107

The molecule in which hybrid MOs involve only one d-orbital of the central atom is: [Sep. 04, 2020 (II)]

Options:

A. $[N i(CN)_4]^2$

B. BrF₅

C. X eF $_4$

D. $[CrF_6]^{3-}$

Answer: A

Solution:

Solution:

(a) $[N i(CN)_4]^2 = d sp^2$ (b) BrF $_5 = sp^3d^2$ (c) X eF $_4 = sp^3d^2$ (d) $[CrF_6]^3 = d^2sp^2$

Question108

If AB_4 molecule is a polar molecule, a possible geometry of AB_4 is: [Sep. 02,2020(I)]

Options:

A. Square pyramidal

- B. Tetrahedral
- C. Rectangular planar
- D. Squareplanar

Answer: A

Solution:

Solution: For AB_4 compound possible geometry are


```
No. of Bond pair
4
4
4
Structure with sp<sup>3</sup>d<sup>2</sup> hybridisation
```

Structure with sp^3d^2 hybridisation is polar due to lone pair moment while in other possibilities molecules is non-polar. Square pyramidal can be polar due to lone pair moment as the bond pair moments will get cancelled out.

Question109

The shape\/ structure of $[X eF_5]^-$ and $X eO_3F_2$, respectively, are: [Sep. 02,2020 (II)]

Options:

- A. pentagonal planar and trigonal bipyramidal
- B. octahedral and square pyramidal
- C. trigonal bipyramidal and pentagonal planar
- D. trigonal bipyramidal and trigonal bipyramidal

Answer: A

Solution:

```
Solution:

(i) X eF_5^- St. No. = Bond pair + Lone Pair

= (5 + 2) = 7

So, hybridisation is = sp^3d^3 and structure is pentagonal planar.

(ii) X eO_3F_2 St. No. = 5

So, hybridisation is = sp^3d and structure is trigonal bipyramidal.
```

Question110

The molecular geometry of SF $_6$ is octahedral. What is the geometry of SF $_4$ (including lone pair(s) of electrons, if any)? [Sep. 02, 2020 (II)]

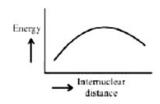
Options:

A. Tetrahedral

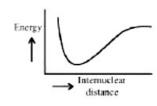
- B. Trigonal bipyramidal
- C. Pyramidal
- D. Square planar
- Answer: B
- Solution:

SF ₄
Bond pair $= 4$
Lone pair = 1
Steric number $= 5,,$
So, hybridisation is sp^3d
F F F

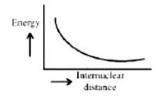
Geometry is trigonal bipyramidal but shape is "See Saw".

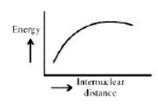


Question111

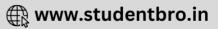

The potential energy curve for the H $_2$ molecule as a function of internuclear distance is : [Sep. 05, 2020 (I)]

Options:


Α.


B.

C.


D.

Answer: B

Solution:

When two H-atoms come closer then initially due to attraction P.E. is -ve, which decreases more as atoms come closer and after reacting to a minimum value as repulsion starts dominating so, P.E. increases then.

Question112

The structure of PCl $_5$ in the solid state is: [Sep.05,2020(I)]

Options:

A. tetrahedral $[PCl_4]^+$ and octahedral $[PCl_6]^-$

B. square planar $[PCl_4]^+$ and octahedral $[PCl_6]^-$

C. square pyramidal

D. trigonal bipyramidal

Answer: A

Solution:

Solution: 2PCl₅(s) \rightarrow [PCl₄]⁺ [PCl₆]⁻ Tetrahedral Octahedral

Question113

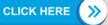
Of the species, N O, N O⁺, N O²⁺ and N O⁻, the one with minimum bond strength is: [Sep. 03,2020 (I)]

Options:

A. NO^+

B. NO

C. $N O^{2+}$


D. N O⁻

Answer: D

Solution:

Solution:

 $\begin{array}{l} \text{Molecular orbital configuration for NO is} \\ \sigma 1s^2\sigma^*1s^2\sigma 2s^2\sigma^*2s^2\pi 2p_x{}^2\pi 2p_y{}^2\sigma 2p_z{}^2\pi^*2p_z{}^1 \end{array}$

Species	Bond border
NO ⁺	3
<i>NO</i> ²⁺	2.5
NO	2
NO	2.5

Bond strength is directly proportional to the bond order, so NO ' has minimum bond strength.

Question114

Two pi and half sigma bonds are present in: [Jan. 10,2019(I)]

Options:

A. O_2^+

- B. N $_2$
- $\mathsf{C.}~\mathsf{O}_2$

D. N $_2^+$

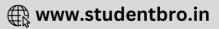
Answer: D

Solution:

Solution: N₂⁺ = 13e⁻ = $\sigma l s^2 \sigma^* l s^2 \sigma 2s^2 \sigma^* 2s^2 \pi 2p_x^2 = \pi 2p_y^2 \sigma 2p_z^1$ B.O = Bonding electrons – Antibonding electrons 2 B.O. = $\frac{9-4}{2}$ = 2.5 = 2 π bond +0.5 σ bond

Question115

According to molecular orbital theory, which of the following is true with respect to Li_2^+ and Li_2^- ? [Jan .9,2019(I)]


Options:

A. Li_2^+ is unstable and Li_2^- is stable

B. Li_2^+ is stable and Li_2^- is unstable

C. Both are stable

D. Both are un stable

Answer: C

Solution:

Electronic configuratios of Li_2^+ and Li_2^- : $\operatorname{Li}_2^+: \sigma 1s^2 \sigma^* 1s^2 \sigma 2s^1$ $\operatorname{Li}_2^-: \sigma 1s^2 \sigma^* 1s^2 \sigma 2s^2 \sigma^* 2s^1$ Now, Bond order of $\operatorname{Li}_2^+ = \frac{1}{2}(3-2) = \frac{1}{2}$ Bond order of $\operatorname{Li}_2^- = \frac{1}{2}(4-3) = \frac{1}{2}$ Here, both Li_2^+ and Li_2^- have positive bond order, thus both are stable.

Question116

In which of the following processes, the bond order has increased and paramagnetic character has changed to diamagnetic? [Jan. 9, 2019 (II)]

Options:

A. N O \rightarrow N O⁺

B. N₂ \rightarrow N₂⁺

C. $O_2 \rightarrow O_2^+$

D. $O_2 \rightarrow O_2^{2-}$

Answer: A

Solution:

Solution:

In case of NO (paramagnetic) \rightarrow NO (diamagnetic) the bond order has increased from 2.5 to 3. For other cases: N₂ (Diamagnetic) \rightarrow N₂⁺ (Paramagnetic) O₂ (Paramagnetic) \rightarrow O₂⁺ (Paramagnetic) O₂ (Paramagnetic) \rightarrow O₂² (Diamagnetic) B \cdot O = 2 B \cdot O = 1

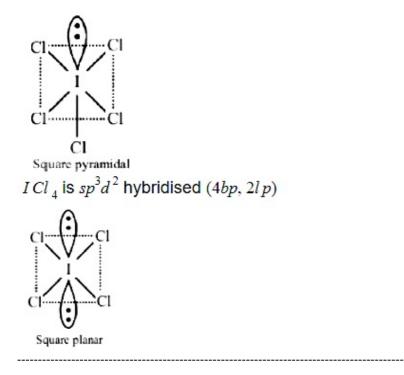
Question117

The correct statement about I Cl $_5$ and I Cl $_4^-$ is : [April 8, 2019 (II)]

Options:

A. both are is isostructural.

B. I Cl $_{\rm 5}$ is trigonal bipyramidal and I Cl $_{\rm 4}^{-}$ is tetrahedral.


C. I Cl $_{\rm 5}$ is square pyramidal and I Cl $_{\rm 4}^{-}$ is tetrahedral.

D. I Cl $_{\rm 5}$ is square pyramidal and I Cl $_{\rm 4}^{-}$ is square planar.

Answer: D

Solution:

 ICl_5 is sp^3d^2 hybridised (5bp, 1lp)

Question118

The ion that has sp³d² hydridisation for the central atom, is: [April 8, 2019 (II)]

Options:

A. $[I Cl_4]^-$

B. [I Cl₂]⁻

C. $[I F_{6}]^{-}$

D. [BrF 2]

Answer: A

Solution:

Species	Hybridisation
ICl ₂	sp ³ d
ICl ₄	sp^3d^2
BrF ₂	sp ³ d
IF ₆	sp ³ d ³

Question119

During the change of O_2 to O_2^- , the incoming electron goes to the orbital : [April 10, 2019 (I)]

Options:

А. п2р_v

B. $\sigma^* 2p_z$

C. $\pi^* 2p_x$

D. п2р_х

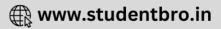
Answer: C

Solution:

Solution: Electronic configuration of O_2 is $\sigma 1s^2 \sigma^* 1s^2 \sigma 2s^2 \sigma^* 2s^2 \sigma 2p_z^2 \pi 2p_x^2 = \pi 2p_y^2$ $\pi^* 2p_x^{-1} = \pi^* 2p_y^{-1}$ When an electron is added in O_2 to form O_2^{-} , the incoming electron goes to $\pi^* 2px$ or $\pi^* 2py$ orbital.

Question120

Among the following, the molecule expected to be stabilised by anion formation is: C₂, O₂, N O, F $_2$


[April 9, 2019 (I)]

Options:

A. C_2

B. F₂

C. NO

D. O₂

Answer: A

Solution:

Solution: Configuration of C₂ $\sigma 1s^2 \sigma^* 1s^2 \sigma 2s^2 \sigma^* 2s^2 \pi 2p_x^2 = \pi 2p_y^2$ Configuration of C₂⁻ $\sigma 1s^2 \sigma^* 1s^2 \sigma 2s^2 \sigma^* 2s^2 \pi 2p_x^2 = \pi 2p_y^2 \sigma 2p_z^1$ Bond order = <u>No.of bounding e⁻ - No.of antibonding e⁻</u> C₂ has s - p mixing and the HOMO is $\pi 2p_x = \pi 2p_y$ and LUMO So the extra electron will occupy bonding molecular orbital a

 C_2 has s – p mixing and the HOMO is $\pi 2p_x = \pi 2p_y$ and LUMO is $\sigma 2p_z$. So, the extra electron will occupy bonding molecular orbital and this will lead to increase in bond order. So, C_2^- has more bond order than C_2 .

Question121

Among the following molecules/ions, C_2^{2-} , N_2^{2-} , O_2^{2-} , O_2 Which one is diamagnetic and has the shortest bond length? [April 8, 2019(II)]

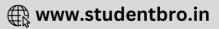
Options:

A. 0₂

B. N $_{2}^{2-}$

C.
$$O_2^{2-}$$

D. C_2^{2-}


Answer: D

Solution:

Solution:

Bond length $\propto \frac{1}{Bond order}$ and diamagnetic species has no unpaired electron in their molecular orbitals.

	No. of unpairedelectrons	Bondorder	Magneticcharacter
C ₂ ²⁻	0	3	diamagnetic
N ₂ ²⁻	2	2	paramagnetic
<i>O</i> ₂ ²⁻	0	1	diamagnetic
02	1	2	paramagnetic

 $\therefore C_2^{2-}$ has least bond length and is diamagnetic.

Question122

Which of the following compounds contain(s) no covalent bond(s)? K Cl , PH $_3$, O $_2$, B $_2$ H $_6$, H $_2$ SO $_4$ [2018]

Options:

A. K Cl , B_2H_6 , PH_3

B. K Cl , H $_2$ SO $_4$

C. K Cl

D. K Cl , $\rm B_2 H$ $_6$

Answer: C

Solution:

Solution: K Cl is an ionic compound while others (PH $_3$, O $_2$, B $_2$ H $_6$, and H $_2$ SO $_4$) are covalent compounds.

Question123

Total number of lone pair of electrons in I $_3$ ion is: [2018]

Options:

A. 3

- B. 6
- C. 9
- D. 12

Answer: C

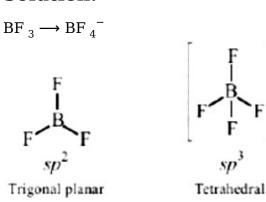
Solution:

 \therefore Total number of lone pair of electrons is 9.

Question124

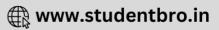
Which of the following conversions involves change in both shape and hybridisation? [Online April 16, 2018]

Options:


A. H₂O \rightarrow H₃O⁺

- B. BF $_3 \rightarrow$ BF $_4^-$
- C. CH $_4 \rightarrow C_2H_6$

D. N H $_3 \rightarrow$ N H $_4^+$


Answer: B

Solution:

Question125

The incorrect geometry is represented by [Online April 16, 2018]

Options:

A. N F ₃ – trigonal planar

- B. BF ₃ -trigonal planar
- C. AsF 5 -trigonal bipyramidal
- D. H $_2$ O bent

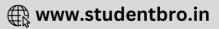
Answer: A

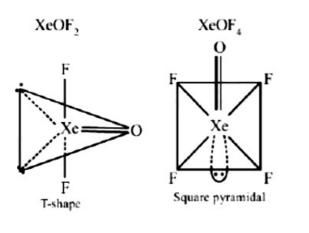
Solution:

N F $_3$ has trigonal pyramidal geometry. N atom has one lone pair and three bond pairs of electrons. The electron pair geometry is tetrahedral and molecular geometry is trigonal pyramidal. The bond angles are lower than tetrahedral bond angles due to lone pair - lone pair and lone pair - bond pair repulsions. N atom is sp^3 hybridised.

Question126

Identify the pair in which the geometry of the species is Tshape and square pyramidal, respectively [Online April 15, 2018(I)]


Options:


- A. I Cl $_2^{-}$ and I Cl $_5$
- B. I O_3^- and I $O_2F_2^-$
- C. Cl F $_{\rm 3}$ and I O $_{\rm 4}$
- D. X eOF $_2$ and X eOF $_4$

Answer: D

Solution:

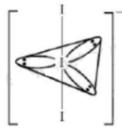
The decreasing order of bond angles in BF $_3$, N H $_3$, PF $_3$ and I $_3^-$ is: [Online April 15, 2018 (I)]

Options:

A.
$$I_{3}^{->}BF_{3} > NH_{3} > PF_{3}$$

B. BF $_{3} > I_{3}^{->}$ PF $_{3} > N H_{3}$

C. BF $_{3} > N H _{3} > PF _{3} > I _{3}^{-1}$


D. $I_{3}^{->}$ N H $_{3}$ > PF $_{3}$ > BF $_{3}$

Answer: A

Solution:

P is sp^3 with 1lp, when central atom

size \uparrow , bond angle \downarrow , $\therefore NH_3 > PF_3$

l is sp^3d (linear), bond angle = 180°

: Dereasing order of bond angle is $I_3 > BF_3 > NH_3 > PF_3$

Get More Learning Materials Here :

CLICK HERE

According to molecular orbital theory, which of the following will not be a viable molecule? [2018]

Options:

A. H e_2^{2+}

B. H e_2^+

C. H $_2^-$

D. H $_{2}^{2-}$

Answer: D

Solution:

Species	No. of e ⁻ s	Elec. conf.	Bond border
He_2^+	(4 - 1 = 3)	$\sigma_{1s}^{2}\sigma^{*}1s^{1}$	$\frac{2-1}{2} = 0.5$
H ₂ ⁻	(2+1=3)	$\sigma_{1s}^{2}\sigma^{*}1s^{1}$	$\frac{2-1}{2} = 0.5$
H ₂ ²⁻	(2+2=4)	$\sigma_{1s}^{2}\sigma^{*}1s^{2}$	$\frac{2-2}{2} = 0$
He_2^{2+}	(4 - 2 = 2)	$\sigma 1s^2$	$\frac{2-0}{2} = 1$

Molecule having zero bond order will not be a viable molecule.

Question129

H – N $\stackrel{I}{--}$ N $\stackrel{I}{--}$ N In hydrogen azide, the bond orders of bonds (I) and (II) are [Online April 15,2018(I)]

Options:

A. I < 2, II > 2

B. I > 2, II > 2

C. I > 2, II < 2

D. I < 2, II < 2

Answer: A

Solution:

As in the resonance structure of hydrogen azide, it can be seen that number of N - N bond for bond (I) ≤ 2 . $H - "N \stackrel{(I)}{=} N^{+(II)} = \stackrel{...}{N} \leftrightarrow H - \stackrel{...}{N} - N^{+(II)} \equiv \stackrel{...}{N}$ Hence for bond (I), bond order will be <2 whereas for bond (II), number of bond ≥ 2 . Thus its bond order will be >2.

Question130

Which of the following best describes the diagram of molecular orbital?

[Online April 15, 2018 (II)]

Options:

- A. A bonding π orbital
- B. A non-bonding orbital
- C. An antibonding $\boldsymbol{\sigma}$ orbital
- D. An antibonding $\boldsymbol{\pi}$ orbital

Answer: D

Solution:

Solution:

An antibonding π orbital best describes the given diagram of a molecular orbital. Two orbitals laterally overlap to form π bond. Out of phase combination of these two p orbitals give π^* MO.

Question131

In the molecular orbital diagram for the molecular ion, N $_2^+$, the number of electrons in the σ_{2p} molecular orbital is: [Online April 15,2018(I)]

Options:

- A. 0
- B. 2
- C. 3
- D. 1
- Answer: D

Solution:

Total electrons in N $_2^{+} = (7 \times 2) - 1 = 13$ N $_2^{+} \rightarrow K K \sigma (2s)^2 \sigma^* (2s)^2 \pi (2p_x)^2 = \pi (2p_y)^2 \sigma (2p_z)^1$ Number of electron in σ_{2p_z} is 1

Question132

sp³d ² Hybridisation is not displayed by: [Online April 8, 2017]

Options:

- A. BrF 5
- B. SF $_6$
- C. $[CrF_{6}]^{3-}$
- D. PF 5

Answer: D

Solution:

(a) <i>BrF</i> 5	$F > H_{F} > F > F_{F}$	sp ³ d ²
(b) <i>SF</i> ₆	F > F < F < F < F < F < F < F < F < F <	sp ³ d ²
(c) [<i>CrF</i> ₆] ³	$\begin{bmatrix} F \\ F $	sp ³ d ²
(d) <i>PF</i> 5	$F \xrightarrow{F} P \xrightarrow{F} F$	sp ³ d

The group having triangular planar structures is : [Online April 9, 2017]

Options:

A. BF₃, N F₃, CO₃²⁻ B. CO₃²⁻, N O₃⁻, SO₃ C. N H₃, SO₃, CO₃²⁻ D. N Cl₃, BCl₃, SO₃

Answer: B

Solution:

Group	Hybridisation	Shape
(a) <i>BF</i> 3	sp^2	Triangular Planar (T.P.)
NF ₃	sp ³	Tetrahedral (T)
CO3 ²⁻	sp ²	T.P.
(b) <i>CO</i> ₃ ²⁻	sp ²	T.P.
NO3	sp ²	T.P.} (All have same hybridisation)
SO ₃	sp2	T.P.
(C) NH 3	sp ³	т
SO ₂	sp ³	T.P.
<i>CO</i> ₃ ²⁻	sp ²	T.P.
(d) NCl 3	sp ³	т
BCl ₃	sp ²	T.P.
SO ₃	sp^2	T.P.

Which of the following is paramagnetic? [Online April 8, 2017]

Options:

A. N O^+

B. CO

C. O₂²⁻

D. B_2

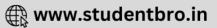
Answer: D

Solution:

Solution:

	Total electron
No ⁺	14
со	14
<i>O</i> ₂ ²⁻	<mark>1</mark> 8
<i>B</i> ₂	<mark>1</mark> 0

$$\begin{split} \mathrm{N} \ \mathrm{O}^+ &\Rightarrow \mathrm{K} \, \mathrm{K} \, \cdot \, \sigma(2s)^2 \sigma^*(2s)^2 \cdot (\pi 2 p_x)^2 \\ &= (\pi 2 p_y)^2 \cdot (\sigma 2 p_z)^2 \quad \text{diamagnetic} \\ \mathrm{CO} &\Rightarrow \mathrm{K} \, \mathrm{K} \, \cdot \, \sigma(2s)^2 \sigma^*(2s)^2 \cdot (\pi 2 p_x)^2 \\ &= (\pi 2 p_y)^2 \cdot (\sigma 2 p_z)^2 \quad \text{diamagnetic} \\ \mathrm{O_2}^{2^-} &\Rightarrow \mathrm{K} \, \mathrm{K} \, \cdot \, \sigma(2s)^2 \sigma^*(2s)^2 \cdot \, \sigma(2 p_z)^2 (\pi 2 p_x)^2 \\ &= (\pi 2 p_y)^2 \cdot \pi^*(2 p_x)^2 = \pi^*(2 p_y)^2 \, \text{diamagnetic} \\ \mathrm{B}_2 &\Rightarrow \mathrm{K} \, \mathrm{K} \, \cdot \, \sigma(2s)^2 \sigma^*(2s)^2 \cdot \pi (2 p_x)^1 = \pi (2 p_y) \text{ paramagnetic} \end{split}$$


Question135

Which of the following species is not paramagnetic? [2017]

Options:

- A. N O
- B. CO
- $C.~O_2$
- D. B₂

Answer: B

Solution:

N O \rightarrow One unpaired electron is present in π^* molecular orbit, hence paramagnetic. (b) CO(14) \rightarrow K K $\sigma 2s^2 \pi 2p_x^2 = \pi 2p_y^2 \sigma 2p_z^2 \sigma^* 2s^2$ No unpaired electron, hence diamagnetic. (c) O₂(16) \rightarrow K K $\sigma 2s^2 \sigma^* 2s^2 \sigma 2p_z^2 \pi 2p_x^2 = \pi 2p_y^2 \pi^* 2p_x^1 = \pi^* 2p_y^1$ Two unpaired electrons, hence paramagnetic. (d) B₂(10) \rightarrow K K $\sigma 2s^2 \sigma^* 2s^2 \pi 2p_x^1 = \pi 2p_y^1$ B₂ contains two unpaired electrons, hence paramagnetic.

Question136

The species in which the N atom is in a state of sp hybridisation is : [2016]

Options:

A. NO_3^{-}

B. NO₂

C. N O_2^+

D. N O_2^-

Answer: C

Solution:

Solution:

Hybridisation (H) = [No. of valence electrons of central atom + No. of monovalent atoms attached to it + (-ve charge if any –(+ ve charge if any)]

 $N O_2^+$ = i.e. sp hybridisation $N O_2^-$ = i.e. sp² hybridisation

 NO_3^- = i.c. sp² hybridisation

The Lewis structure of N O_2 shows a bent molecular geometry with trigonal planar electron pair geometry hence the hybridization will be sp^2 .

Question137

The group of molecules having identical shape is: [Online April 9, 2016]

Options:

A. PCl $_5$, I F $_5$, X eO $_2$ F $_2$

B. BF $_3$, PCl $_3$, X cO $_3$ C. SF $_4$, X eF $_4$, CCl $_4$ D. Cl F $_3$, X eOF $_2$, X eF $_3^+$

Answer: D

Solution:

Solution:

 $\begin{array}{l} \mathrm{Cl}\ \mathrm{F}_{3} \longrightarrow \mathsf{Hybridisation} \ = \ 3 + \ \frac{1}{2}[7 - 3] = \ 5(\mathrm{sp}^{3}\mathrm{d}\) \\ \mathrm{X}\ \mathrm{eOF}_{2} \longrightarrow \mathrm{Hybridisation} \ = \ 3 + \ \frac{1}{2}[8 - 4] = \ 5(\mathrm{sp}^{3}\mathrm{d}\) \\ \mathrm{X}\ \mathrm{eF}_{3}^{+} \longrightarrow \mathrm{Hybridisation} \ = \ 3 + \ \frac{1}{2}[8 - 3 - 1] = \ 5(\mathrm{sp}^{3}\mathrm{d}\) \\ \mathrm{All}\ \mathrm{molecules}\ \mathrm{have}\ \mathrm{sp}^{3}\mathrm{d}\ \mathrm{hybridisation}\ \mathrm{and}\ 2\ \mathrm{lone}\ \mathrm{pairs}. \ \mathrm{Hence}\ \mathrm{all}\ \mathrm{have}\ \mathrm{identical}\ (\mathrm{T}\ \mathrm{shape}). \end{array}$

Question138

The bond angle H - X - H is the greatest in the compound: [Online April 10,2016]

Options:

A. PH ₃

B. CH $_4$

C. N H $_3$

D. H ₂O

Answer: B

Solution:

Solution:

More the number of lone pairs on central atom, the greater is the contraction caused in the angle between bond pairs. In CH_4 there is no lone pair of electrons, hence bond angle is greatest.

Question139

Which compound exhibits maximum dipole moment among the following ? [Online April 11, 2015]

Options:

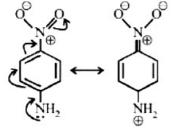
A.

В.

C.

D.

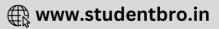
Answer: C


Solution:

Solution:

Dipole moment = (Distance between opposite charges) x (charge, q) μ = $q \times d$

So, greater the distance between the opposite charges higher the dipole. Due to the resonance the greater charge separation occurs between charges due to linearity.



Question140

Molecule AB has a bond length of 1.617A and a dipole moment of 0.38D. The fractional charge on each atom (absolute magnitude) is : ($e_0 = 4.802 \times 10^{-10}$ esu)

[Online April 11, 2015]

Options:

A. 0.5

B. 0.05

C. 0

D. 1.0

Answer: B

Solution:

Solution: Dipole moment (μ) = q × d \Rightarrow 1D \approx 10⁻¹⁸ esu cm 0.38 × 10⁻¹⁸ esu cm = q × (1.617 × 10⁻⁸cm) q = 2.35 × 10⁻¹¹ esu So, fractional charge = <u>Partial charge</u> = <u>q</u> Total charge = <u>Q</u> = $\frac{2.35 \times 10^{-11} \text{ esu}}{4.802 \times 10^{-10} \text{ esu}} = 0.049 \approx 0.05$

Question141

After understanding the assertion and reason, choose the correct option.

Assertion : In the bonding molecular orbital (MO) of H $_2$, electron density is increased between the nuclei. Reason : The bonding M O is $\Psi_A + \Psi_B$, which shows destructive interference of the combining electron waves. [Online April 10, 2015]

Options:

A. Assertion is incorrect, reason is correct.

B. Assertion is correct, reason is incorrect.

C. Assertion and reason are correct and reason is the correct explanation for the assertion.

D. Assertion and reason are correct, but reason is not the correct explanation for the assertion.

Answer: B

Solution:

Solution:

Assertion is correct but reason is incorrect. Bonding MO shows constructive interference of the combining electron waves.

Amongst LiCl, RbCl, BeCl₂ and MgCl₂ the compounds with the greatest and the least ionic character, respectively are: [Online April 19, 2014]

Options:

- A. LiCl and RbCl
- B. RbCl and BeCl $_{\rm 2}$
- C. M gCl $_2$ and BeCl $_2$
- D. RbCl and M gCl $_{\rm 2}$

Answer: B

Solution:

Solution:

According to Fajan's rules smaller, highly charged cation has greatest covalent character while large cation with smaller charge has greatest ionic character.

Question143

Which of these statements is not true? [Online April 19, 2014]

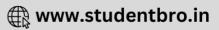
Options:

- A. N O^+ is not isoelectronic with O_2
- B. B is always covalent in its compounds
- C. In aqueous solution, the T l ⁺ion is much more stable than T l ⁺³
- D. LiAl H $_4$ is a versatile reducing agent in organic synthesis.

Answer: A

Solution:

Solution:


 $\mathrm{NO}^{+}\mathrm{has}$ 14 electrons and O_{2} has 16 electrons. Therefore, they are not isoelectronic species.

Boron forms covalent bond in its compound.

 $T1^+$ is much more stable than Tl^{3+} as going down the group the stability of lower oxidation number increases due to inert pair effect.

 $LiAlH_4$ is a selective reducing agent in organic synthesis. Hence, option A is not true.

The correct order of bond dissociation energy among N $_2$, O $_2$, O $_2^-$ is shown in which of the following arrangements? [Online April 11, 2014]

Options:

A. N₂ > $O_2^- > O_2$ B. $O_2^- > O_2 > N_2$ C. N₂ > $O_2^- > O_2^-$ D. $O_2^- > O_2^- > N_2$

Answer: C

Solution:

Solution:

The bond order of N $_2$, $\rm O_2$, and $\rm O_2^-$ are 3,2 and 1.5 respectively. Since higher bond order implies higher bond dissociation energy, hence the correct order will be N $_2$ > $\rm O_2^- > O_2^-$

Question145

The number and type of bonds in C_2^{2-} ion in CaC_2 are: [Online April 9, 2014]

Options:

A. One σ bond and one π -bond

B. One σ bond and two π -bond

C. Two σ bond and two π -bond

D. Two σ bond and one π -bond

Answer: B

Solution:

Solution: $C_2^{2^-}$ ion $\rightarrow [C \equiv C]^{2^-}$ Dicarbide ion $C_2^{2^-}$ has 1 sigma and 2 pi bonds. There are two π bonds and one σ bond in a triple bond.

Question146

Which of the following molecules has two sigma (σ) and two pi (π) bonds? [Online April 12, 2014]

Options:

A. $\mathrm{C_2H}_4$

B. N₂F₂

C. $C_2H_2Cl_2$

D. HCN

Answer: D

Solution:

Solution: H $\stackrel{\sigma}{-} C \stackrel{\pi, \sigma}{\underset{\pi}{\equiv}} N$ Therefore, HCN has 2π and 2σ bonds. σ

Question147

Which one of the following properties is not shown by NO? [2014]

Options:

A. It is diamagnetic in gaseous state

B. It is neutral oxide

C. It combines with oxygen to form nitrogen dioxide

D. Its bond order is 2.5

Answer: A

Solution:

Solution:

Nitric oxide is paramagnetic in the gaseous state because of the presence of one unpaired electron in its outermost shell. The electronic configuration of N O is $\sigma K K \sigma 2s^2 \sigma^* 2s^2 \sigma 2p_z^2 \pi 2p_x^2 = \pi 2p_y^2 \pi^* 2p_x^1 = \pi^* 2p_y^0$

Question148

Which one of the following molecules is paramagnetic? [Online April 19, 2014]

Options:

A. N ₂

B. NO

C. CO

D. O₃

Answer: B

Solution:

Solution:

The molecular orbital configuration of the molecules given is Total no. of electrons in N O = 7(N) + 8(O) = 15 Hence E.C. of N O = K K $\sigma(2s)^2 \sigma^*(2s)^2 \sigma 2p_z^2$ $\pi(2p_x)^2 \pi(2p_y)^2 \pi^*(2p_x)^1$ Due to presence of one unpaired electron N O is paramagnetic. Except NO all are diamagnetic due to absence of unpaired electrons.

Question149

Which of the following has unpaired electron(s)? [Online April 9, 2014]

Options:

A. N $_2$

B. O₂⁻

C. N $_2^{2+}$

D. 02²⁻

Answer: B

Solution:

Solution:

 $\begin{aligned} O_2^{-}(17) &= K K (\sigma 2s)^2 (\sigma^* 2s^2) (\sigma 2p_z)^2 \\ (\pi 2p_x)^2 &= (\pi 2p_y)^2 (\pi^* 2p_x)^2 = (\pi^* 2p_y)^1 \\ \text{One unpaired electron - paramagnetic.} \end{aligned}$

Question150

Which one of the following molecules is polar? [Online April 9, 2013]

Options:

A. $X eF_4$

B. IF $_5$

C. SbF $_5$

D. CF $_4$

Answer: B

Solution:

Solution:

The geometry of I F $_5$ is square pyramide with an unsymmetric charge distribution, therefore this molecule is polar.

Question151

Bond distance in HF is 9.17×10^{-11} m. Dipole moment of HF is 6.104×10^{-30} Cm. The percentage ionic character in HF will be : (electron charge = 1.60×10^{-19} C) [Online April 23, 2013]

Options:

A. 61.0%

B. 38.0%

C. 35.5%

D. 41.5%

Answer: D

Solution:

```
Solution:

Given e = 1.60 \times 10^{-19}C

d = 9.17 \times 10^{-11}m

From \mu = e × d

\mu = 1.60 \times 10^{-19} \times 9.17 \times 10^{-11}

= 14.672 \times 10^{-30}

% ionic character

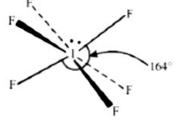
= \frac{\text{Observed dipole moment}}{\text{Dipole moment for } 100\%} ionic bond

= \frac{6.104 \times 10^{-30}}{14.672 \times 10^{-30}} \times 100

= 41.5\%
```


The shape of I F ₆⁻ is: [Online April 23, 2013]

Options:


- A. Trigonally distorted octahedron
- B. Pyramidal
- C. Octahedral
- D. Square antiprism

Answer: A

Solution:

Solution:

The structure of I F $_6^-$ is distorted octahedral. This is due to presence of a "weak" lone pair.

Question153

In which of the following sets, all the given species are isostructural? [Online April 25, 2013]

Options:

A. CO₂, N O₂, Cl O₂, SiO₂

B. PCl $_3$, Al Cl $_3$, BCl $_3$, SbCl $_3$

C. BF $_3$, N F $_3$, PF $_3$, Al F $_3$

D. BF $_4^-$, CCl $_4$, N H $_4^+$, PCl $_4^+$

Answer: D

Solution:

Solution: All have tetrahedral structure.

In which of the following pairs of molecules\/ions, both the species are not likely to exist? [2013]

Options:

A. H₂⁺, H e₂²⁻ B. H₂⁻, H e₂²⁻ C. H₂²⁺, H e₂ D. H₂⁻, H e₂²⁺

Answer: C

Solution:

```
Solution:

H_2^{2^+} = \sigma 1 s^0 \sigma^* 1 s^0

Bond order for H_2^{2^+} = \frac{1}{2}(0-0) = 0

H e_2 = \sigma 1 s^2 \sigma^* 1 s^2

Bond order for H e_2 = \frac{1}{2}(2-2) = 0

So both H_2^{2^+} and H e_2 do not exist.
```

Question155

Which one of the following molecules is expected to exhibit diamagnetic behaviour? [2013]

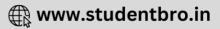
Options:

A. C₂

B. N $_2$

C. O₂

D. S_2


Answer: 0

Solution:

Solution:

The molecular orbital structures of C₂ and N₂ are N₂ = K K $\sigma 2s^2 \sigma^* 2s^2 \pi 2p_x^2 = \pi 2p_y^2 \sigma 2p_z^2$ C₂ = K K $\sigma 2s^2 \sigma^* 2s^2 \pi 2py_x^2 = \pi 2p_y^2$

Both N $_{\rm 2}$ and C $_{\rm 2}$ have paired electrons, hence they are diamagnetic.

Question156

Which of the following is the wrong statement [2013]

Options:

- A. ONCl and ONO are not isoelectronic.
- B. O₃ molecule is bent
- C. Ozone is violet-black in solid state
- D. Ozone is diamagnetic gas.

Answer: 0

Solution:

Solution: All options are correct, (a) ON Cl = $8 + 7 + 17 = 32e^-$ ON O⁻ = $8 + 7 + 8 + 1 = 24e^-$ not isoelectronic

(b) The central atom is sp^2 hybridised with one lone pair. (c) It is a pale blue gas. At -249.7° , it forms violet black crystals. (d) It is diamagnetic in nature due to absence of unpaired electrons.

Question157

Stability of the species Li_2 , Li_2^- and Li_2^+ increases in the order of : [2013]

Options:

A.
$$\text{Li}_2 < \text{Li}_2^+ < \text{Li}_2^-$$

B. $\text{Li}_2^- < \text{Li}_2^+ < \text{Li}_2$

C. $\text{Li}_2 < \text{Li}_2^- < \text{Li}_2^+$

D. $\text{Li}_2^- < \text{Li}_2 < \text{Li}_2^+$

- Answer: B
- Solution:

Li₂ = $\sigma 1s^2 \sigma^* 1s^2 \sigma 2s^2$ ∴ Bond order = $\frac{1}{2}(4-2) = 1$ Li₂⁺ = $\sigma 1s^2 \sigma^* 1s^2 \sigma 2s^1$ B.O. = $\frac{1}{2}(3-2) = 0.5$ Li₂⁻ = $\sigma 1s^2 \sigma^* 1s^2 \sigma 2s^2 \sigma^* 2s^1$ B.O. = $\frac{1}{2}(4-3) = 0.5$

The bond order of Li_2^+ and Li_2^- is same but Li_2^+ is more stable than Li_2^- because Li_2^+ is smaller in size and has 2 electrons in antibonding orbitals whereas Li_2^- has 3 electrons in antibonding orbitals. Hence Li_2^+ is more stable than Li_2^-

Question158

In which of the following ionization processes the bond energy has increased and also the magnetic behaviour has changed from paramagnetic to diamagnetic? [Online April 9, 2013]

Options:

A. N O \rightarrow N O⁺

B. N₂ \rightarrow N₂⁺

C. C₂ \rightarrow C₂⁺

D. $O_2 \rightarrow O_2^+$

Answer: A

Solution:

```
Solution:
For NO Total no. of electrons = 15
B \cdot O = 2.5
Mag. behaviour = paramagnetic
For N O<sup>+</sup>
Total no. of electrons = 14
B \cdot O = 3
Mag. behaviour = diamagnetic
```

Question159

Bond order normally gives idea of stability of a molecular species. All the molecules viz. H $_2$, Li $_2$ and B $_2$ have the same bond order yet they are not equally stable. Their stability order is [Online April 22, 2013]

Options:

A. H $_{2} > B_{2} > Li_{2}$

B. $Li_2 > H_2 > B_2$

C. $Li_2 > B_2 > H_2$

D. $B_2 > H_2 > Li_2$

E. None of above

Answer: E

Solution:

Solution:

(N) None of the given option is correct. The molecular orbital configuration of the given molecules is $H_2 = \sigma 1 s^2 \sigma 1 s^0$ (no anti-bonding electron) $Li_2 = \sigma 1 s^2 \sigma^* 1 s^2 \sigma 2 s^2$ (two anti-bonding electrons) $B_2 = \sigma 1 s^2 \sigma^* 1 s^2 \sigma 2 s^2 \sigma^* 2 s^2 \{ \pi 2 p_y^{-1} = \pi 2 p_z^{-1} \}$ (4 anti-bonding electrons) Though the bond order of all the species are same (B · O = 1) but stability is different. This is due to difference in the presence of no. of anti-bonding electron. Higher the no. of anti-bonding electron lower is the stability hence the correct order is $H_2 > Li_2 > B_2$

Question160

The internuclear distances in O – O bonds for O_2^+ , O_2^- , O_2^- and O_2^{2-} respectively are: [Online April 25, 2013]

Options:

A. 1.30Å, 1.49Å, 1.12Å, 1.21Å

B. 1.49Å, 1.21Å, 1.12Å, 1.30Å

C. 1.21Å, 1.12Å, 1.49Å, 1.30Å

D. 1.12Å, 1.21Å, 1.30Å, 1.49Å

Answer: D

Solution:

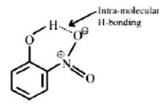
Solution: The bond length follows the order $O_2^+ < O_2 < O_2^- < O_2^{2-}$ According to this the possible values are 1.12Å, 1.21Å, 1.30Å, 1.49Å

Question161

ortho-Nitrophenol is less soluble in water than p - and m - nitrophenols because : [2012]

Options:

A. o -nitrophenol is more volatile steam than those of m and p -isomers.


- B. o -nitrophenol shows intramolecular H-bonding
- C. o-nitrophenol shows intermolecular H-bonding
- D. Melting point of o -nitrophenol is lower than those of m and p -isomers.

Answer: B

Solution:

Solution:

Compounds involved in chelation become non-polar. Consequently such compounds are soluble in non-polar solvents like ether, benzene etc. and are only sparingly soluble in water, whereas meta and para isomers are more soluble in water & less soluble in non-polar solvents.

Question162

Among the following, the species having the smallest bond length is [Online May 7,2012]

Options:

A. NO^{-}

B. N O^+

C. O₂

D. N O

Answer: B

Solution:

Solution:

 $N \ O(16) - B \ . O, -2 \ \& \ O_2(16) - B, \ O, -2$ $N \ O^+(14) - B \ . O^- -3 \ N \ O(15) - B \ . O^- - 2.5$ Higher the bond order lower is the bond length. Hence NO $^+$ will have smallest bond.

Among the following chloro-compound having the lowest dipole moment is [Online May 12, 2012]

Options:

A. CH ₃Cl

B.

$$\binom{Cl}{H_3C} = C < \binom{H}{Cl}$$

C. CH ₂Cl ₂

D.

$$C^{I}$$
 $C = C < H^{I}$

Answer: C

Solution:

Solution:

$$rac{CI}{H}$$
 $c = c < rac{H}{CI}$

Dipole moment $(\mu) = 0$

Question164

Although CN $^-$ ion and N $_2$ molecule are isoelectronic, yet N $_2$ molecule is chemically inert because of [Online May 12, 2012]

Options:

- A. presence of more number of electrons in bonding orbitals
- B. low bond energy
- C. absence of bond polarity
- D. uneven electron distribution.

Answer: C

Solution:

In nitrogen molecule, both the nitrogen atoms have same electronegativity. So it has zero polarity and hence less tendency to break away and forms ions.

Question165

In which of the following pairs, the two species are not isostructural ? [2012]

Options:

- A. $\mathrm{CO_3}^{2-}$ and N $\mathrm{O_3}^{-}$
- B. PCl $_4^+$ and SiCl $_4$
- C. PF $_5$ and BrF $_5$

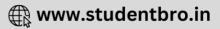
D. Al F $_6^{3-}$ and SF $_6$

Answer: C

Solution:

PF $_5$ is trigonal bipyramidal

BrF $_{\rm 5}$ is square pyramidal (distorted)


Question166

The formation of molecular complex BF ₃ – N H ₃ results in a change in hybridisation of boron [Online May 12, 2012]

Options:

- A. from sp^2 to $d sp^2$
- B. from sp^2 to sp^3
- C. from sp^3 to sp^2
- D. from sp^3 to sp^3d

Answer: B

Solution:

In BF ₃, B is sp² hybridized with one empty p_z orbital. The empty p_z orbital of BF ₃ can be filled by lone pair of molecules such as N H ₃. When this occurs a tetrahedral molecule or ion is formed which is sp³ hybridized.

Question167

Which of the following has the square planar structure? [Online May 19, 2012]

Options:

A. $X eF_4$

B. N H $_4^+$

C. BF $_4^-$

D. CCl₄

Answer: A

Solution:

Solution:

 $X eF_4$ has square pyramidal structure, while $N H_4^+$, BF_4^- and CCl_4 have tetrahedral structure.

Question168

Among the following species which two have trigonal bipyramidal shape?

(I) N I₃ (II) I₃⁻ (III) SO₃²⁻ (IV) N O₃⁻ [Online May 26, 2012]

Options:

A. I and III

B. III and IV

C. I and IV

D. II and III

Answer: A

Solution:

Solution:

Specise	Hybridisation	Shape
NI ₃	sp ³	Trigonal pyramidal
I 3 ⁻	sp ³ d	Linear
SO3 ²⁻	sp ³	Trigonal pyramidal
NO3 ⁻	sp ²	Trigonal planer

Hence, N I $_3$ and SO $_3^{2-}$ have same shape.

Question169

The number of types of bonds between two carbon atoms in calcium carbide is : [2011RS]

Options:

A. One sigma, one pi

B. Two sigma, onc pi

C. Two sigma, two pi

D. One sigma, two pi

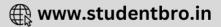
Answer: D

Solution:

Solution:

Calcium carbide exists as Ca^{2+} and C_2^{2-} . According to the molecular orbital model, C_2^{2-} should have following molecular orbital configuration: K K $\sigma 2s^2 \sigma^* 2s^2 \pi 2p_x^2 = \pi 2p_y^2 \sigma 2p_z^2$

Thus M.O. configuration suggests that it contains one σ & two π bonds.



Question170

Which one of the following pairs of species have the same bond order? [2008]

Options:

A. CN $\overline{}$ and NO⁺

B. CN $^-$ and CN $^+$

C. O⁻, and CN ⁻

D. N O⁺ and CN ⁺

Answer: A

Solution:

Solution:

For any species to have same bond order we can expect them to have same number of electrons. Calculating the number of electrons in various species. $O_2^{-}(8 + 8 + 1 = 17)$; CN $^{-}(6 + 7 + 1 = 14)$ N O⁺(7 + 8 - 1 = 14); CN $^{+}(6 + 7 - 1 = 12)$ We find CN $^{-}$ and N O⁺ both have 14 electrons, so they have same bond order.

Question171

The bond dissociation energy of B – F in BF₃ is 646kJ mol⁻¹, whereas that of C – F in CF₄ is 515kJ mol⁻¹. The correct reason for higher B – F bond dissociation energy as compared to that of C – F bond is [2008]

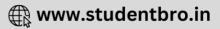
Options:

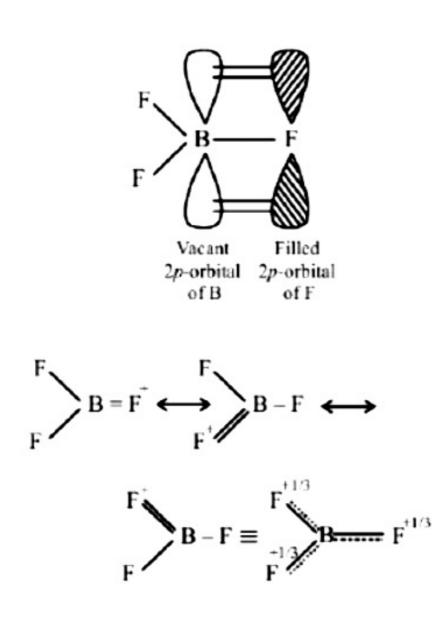
A. stronger σ bond between B and F in BF ₃ as compared to that between C and F in CF ₄.

B. significant $p\pi - p\pi$ interaction between B and F in BF ₃, whereas there is no possibility of such interaction between C and F in CF ₄.

C. lower degree of $p\pi$ – $p\pi$ interaction between B and F in BF $_3$ than that between C and F in CF $_4.$

D. smaller size of B -atom as compared to that of C -atom.


Answer: B


Solution:

Solution:

Note: The delocalised $p\pi - p\pi$ bonding between filled p-orbital of F and vacant p-orbital of B leads to shortening of B - F bond length which results in higher bond dissociation energy of the B - F bond.

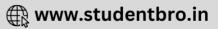
Question172

Using MO theory, predict which of the following species has the shortest bond length? [2008]

Options:

A. 0₂⁺

B. O₂⁻


C. O₂²⁻

D. 02²⁺

Answer: D

Solution:

Bond order = $\frac{\text{No.of bonding electrons} - \text{No.of antibonding electrons}}{2}$ Bond order in $O_2^+ = \frac{10-5}{2} = 2.5$ Bond order in $O_2^- = \frac{10-7}{2} = 1.5$ Bond order in $O_2^{2-} = \frac{10-8}{2} = 1$ Bond order in $O_2^{2+} = \frac{10-4}{2} = 3$ Since, bond order $\propto \frac{1}{\text{Bond length}}$ \therefore Bond length is shortest in O_2^{2+} .

Question173

Which of the following hydrogen bonds is strongest? [2007]

Options:

- A. O H – F
- В. О Н – Н
- C. F H – F
- D. O H – O
- Answer: C

Solution:

Solution:

Note: Greater the difference between electronegativity of bonded atoms, stronger will be bond. Since F is most electronegative, hence $F - H \dots F$ is the strongest bond.

Question174

The charge//size ratio of a cation determines its polarizing power. Which one of the following sequences represents the increasing order of the polarizing power of the cationic species, K^+ , Ca^{2+} , Mg^{2+} , $Be^{2+?}$ [2007]

Options:

A. $Ca^{2+} < M g^{2+} < Be^{+} < K$ B. $M g^{2+} < Be^{2+} < K^{+} < Ca^{2+}$ C. $Be^{2+} < K^{+} < Ca^{2+} < M g^{2-}$ D. $K^{+} < Ca^{2+} < M g^{2+} < Be^{2+}$

Answer: D

Solution:

Solution:

Smaller the size and higher the charge, more will be the polarising power of the cation. Since the order of the size of cation is $K^+ > Ca^{2+} > M g^{2+} > Be^{2+}$, so the correct order of polarising power is $K^+ < Ca^{2+} < M g^{2+} < Be^{2^+}$

Question175

Which of the following species exhibits the diamagnetic bchaviour? [2007]

Options:

A. NO

B. O₂²⁻

$$C. O_2^+$$

D. O₂

Answer: B

Solution:

Solution:

Diamagnetic species have no unpaired electrons whereas paramagnetic species has one or more unpaired electrons. For electronic configuration of O_2^{+} , O_2^{-} and O_2^{-2} , consult Q.2.

 O_2 and O_2^+ have 2 and 1 unpaired electron respectively, while $O_2^{2^-}$ has no unpaired electron $N O \rightarrow K K \sigma 2s^2 \sigma^2 2s^2 \sigma 2p_z^2 \pi 2p_x^2 = \pi 2p_y^2 \pi^2 2p_x^2 = \pi^2 2p_y^2$ $\pi^2 2p_x^{-1} = \pi^2 2p_y^0$ Thus no has one unpaired electron

Question176

In which of the following ionization processes, the bond order has increased and the magnetic behaviour has changed? [2007]

Options:

A. N₂ \rightarrow N₂⁺ B. C₂ \rightarrow C₂⁺

C. N O \rightarrow N O⁺

D. $O_2 \rightarrow O_2^+$.

Answer: C

Solution:

Solution: (a) N₂: bond order 3, diamagnetic N₂⁺: bond order 2.5, paramagnetic (b) C₂: bond order 2, diamagnetic C₂⁺: bond order 1.5, paramagnetic (c) NO: bond order 2.5, paramagnetic N O⁺: bond order 3, diamagnetic (d) O₂: bond order 2, paramagnetic O₂⁺: bond order 2.5, paramagnetic

Question177

In which of the following molecules\/ions are all the bonds not equal? [2006]

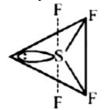
Options:

A. X eF 4

B. BF ₄

C. SF $_4$

D. SiF $_4$


Answer: C

Solution:

In SF $_{4}$ the hybridisation is $\mathrm{sp}^{3}\mathrm{d}$ and the shape of molecule is

It contains two different bonds i.e., axial and equatorial.

Question178

The decreasing values of bond angles from N H $_3(106^\circ)$ to SbH $_3(101^\circ)$ down group- 15 of the periodic table is due to [2006]

Options:

A. decreasing l p - bp repulsion

B. decreasing electronegativity

C. increasing bp – bp repulsion

D. increasing p -orbital character in sp^3

Answer: B

Solution:

Solution:

The bond angle decreases on moving down the group due to decrease in bond pair-bond pair repulsion. N H₃ 107° PH₃ 94° AsH₃ 92° SbH₃ 91° BiH₃ 90° **Note:** This can also be explained due to decrease in electronegativity from N to Bi.

Question179

Which of the following molecules/ions does not contain unpaired electrons? [2006]

Options:

A. N $_2^+$

B. O_2

C. O₂²⁻

D. B₂

Answer: C

Solution:

Solution: The distribution of electrons in MOs is as follows : $N_2^+($ electrons 13) $\Rightarrow KK\sigma 2s^2\sigma^2 2s^2\sigma 2p_2^2\pi 2p_x^2 = \pi 2p_y^{-1}$ $\Rightarrow KK\sigma 2s^2\sigma 2s^2\sigma 2p_x^2 \Rightarrow O_2($ electron 16) $\pi 2p_x^2 = \pi 2p_y^2\pi^2 2p_x^{-1} = \pi^2 2p_y^{-1}$ $\Rightarrow KK\sigma 2s^2\sigma^2 2s^2\sigma 2p_x^2 \Rightarrow O_2^{-2}($ electron 18) $\pi 2p_x^2 = \pi 2p_y^2\pi^2 2p_x^2 = \pi^2 2p_y^2$ $B_2($ electrons 10) $\Rightarrow KK\sigma 2s^2\sigma^2 2s^2\sigma 2p_x^2$ $KK\sigma 2s^2\sigma^2 2s^2\pi 2p_x^{-1} = \pi 2p_y^{-1}$ Only O_2^{-2} does not contain any unpaired electron.

Question180

Lattice energy of an ionic compound depends upon [2005]

Options:

- A. Charge on the ion and size of the ion
- B. Packing of ions only
- C. Size of the ion only
- D. Charge on the ion only

Answer: A

Solution:

Solution:

The value of lattice energy depends on the charge present on the two ions and the distance between them.

Question181

Which of the following species is diamagnetic in nature? [2005]

Options:

A. H $_2^-$

B. H₂⁺

C. H $_2$

D. H e_2^+

Answer: C

Solution:

Solution:

```
A diamagnetic substance contains no unpaired electron. H<sub>2</sub> is diamagnetic as it contains all paired electrons H<sub>2</sub> = \sigma l s^2, H<sub>2</sub><sup>+</sup> = \sigma l s^1, H<sub>2</sub><sup>-</sup> = \sigma l s^2 \sigma l s

(diamagnetic) (paramagnetic) (paramagnetic) (paramagnetic)

H e<sub>2</sub><sup>+</sup> = \sigma l s^2 \sigma^* l s

(paramagnetic)
```

Question182

The bond order in NO is 2.5 while that in NO^+ is 3 . Which of the following statements is true for these two species? [2004]

Options:

A. Bond length in NO^+ is equal to that in NO

B. Bond length in N O is greater than in N O^+

C. Bond length in N O^+ is greater than in N O

D. Bond length is unpredictable

Answer: B

Solution:

Solution: Now since bond order of NO^+ (3) is higher than that of NO(2.5). Thus bond length of NO^+ will be shorter.

Question183

The correct order of bond angles (smallest first) in H $_2$ S, N H $_3$, BF $_3$ and SiH $_4$ is [2004]

Options:

A. H $_2$ S < N H $_3$ < SiH $_4$ < BF $_3$

B. N H $_3$ < H $_2$ S < SiH $_4$ < BF $_3$

C. H₂S < SiH₄ < N H₃ < BF₃

D. H₂S < N H₃ < BF₃ < SiH₄

Answer: A

Solution:

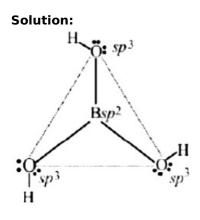
```
Solution:
The order of bond angles
BF _3 > SiH _4 > N H _3 > H _2S
120° 109°28 107° 92.5
```

Question184

The states of hybridization of boron and oxygen atoms in boric acid (H ₃BO₃) are respectively [2004]

Options:

A. sp^3 and sp^2


B. sp^2 and sp^3

 $C.\ sp^2 \ and \ sp^2$

D. sp^3 and sp^3

Answer: B

Solution:

Question185

Which one of the following has the regular tetrahedral structure? (Atomic nos. : B = 5, S = 16, N i = 28, X e = 54) [2004]

Options:

A. BF $_4^-$

B. SF $_4$

C. X eF $_4$

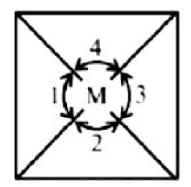
D. $[N i(CN)_4]^{2-}$

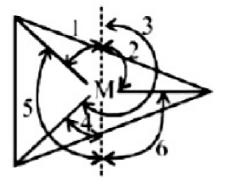
Answer: A

Solution:

Solution: $X eF_4(sp^3d^2, square planar),$ $[N i(CN)_4]^{2-}(d sp^2, square planar)$ $BF_4^-(sp^3, tetrahedral), SF_4(sp^3d, see saw shaped)$

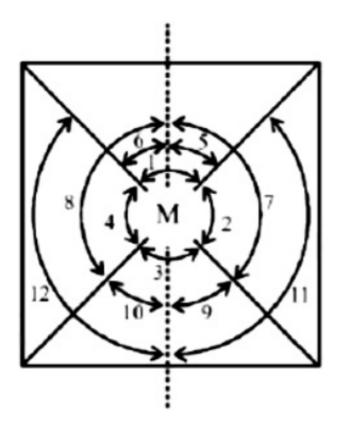
Question186


The maximum number of 90° angles between bond pair bond pair of electrons is observed in [2004]


Options:

- A. $d sp^2$ hybridization
- B. sp³d hybridization
- C. d sp^3 hybridization
- D. sp^3d^2 hybridization

Answer: D


Solution:

 dsp^2 hybridisation sp^3d or dsp^3 hybridisationNumber of 90° angleNumber of 90° anglebetween bonds - 4between bonds - 6

 sp^3d^2 Hybridisation

Number of 90° angle between bonds - 12

Question187

An ether is more volatile than an alcohol having the same molecular formula. This is due to [2003]

Options:

- A. alcohols having resonance structures
- B. intermolecular hydrogen bonding in ethers
- C. intermolecular hydrogen bonding in alcohols
- D. dipolar character of ethers

Answer: C

Solution:

In ether, there is no H-bonding while alcohols have intermolecular H-bonding.

Question188

Which one of the following pairs of molecules will have permanent dipole moments for both members? [2003]

Options:

A. N $\rm O_2$ and $\rm CO_2$

B. N O_2 and O_3

C. SiF $_{\rm 4}$ and CO $_{\rm 2}$

D. SiF $_{\rm 4}$ and N $\rm O_2$

Answer: B

Solution:

Solution: Both N $\rm O_2$ and $\rm O_3$ have angular shape and hence will have net dipole moment.

Question189

Which one of the following compounds has the smallest bond angle in its molecule ? [2003]

Options:

A. OH ₂

B. SH $_2$

C. N H $_3$

 $D. \ SO_2$

Answer: B

Solution:

 $I nH_2S$, due to low electronegativity of sulphur the l.p. – l.p. repulsion is more than $b \cdot p - b \cdot p$. repulsion and hence the bond angle is minimum.

Question190

The pair of species having identical shapes for molecules of both species is [2003]

Options:

A. X eF $_{\rm 2}$, CO $_{\rm 2}$

B. BF $_3$, PCl $_3$

C. PF $_5$, IF $_5$

D. CF $_4$, SF $_4$

Answer: A

Solution:

Solution: Both X eF $_2$ and CO $_2$ have a linear structure. F $- X e - F \quad O = C = O$

Question191

In which of the following species the interatomic bond angle is 109°28["] ? [2002]

Options:

A. N H $_3$, BF $_4^-$

B. N H $_4^+$, BF $_3$

C. N H $_3$, BF $_4$

D. N H $_2$ ⁻, BF $_3$.

Answer: A

Solution:

Solution:

In N H $_3$ and BF $_4$, the hybridisation is sp³ and the bond angle is almost 109°28.

Question192

Hybridisation of the underline atom changes in: [2002]

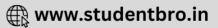
Options:

A. Al H $_{\rm 3}$ changes to Al H $_{\rm 4}^{-}$

B. H $_2$ xO changes to H $_3$ O⁺

```
C. N H _3 changes to N H _4^+
```

D. in all cases


Answer: A

Solution:

Solution:

Hybridisation =
$$\frac{1}{2}$$

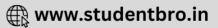
 $\begin{pmatrix} \text{No. of electrons} \\ \text{in valence} \\ \text{shell of atom} \end{pmatrix}$ +
 $\begin{pmatrix} \text{No. of monovalent} \\ \text{atoms around it} \end{pmatrix}$ - $\begin{pmatrix} \text{Charge on} \\ \text{cation} \end{pmatrix}$ + $\begin{pmatrix} \text{Charge on} \\ \text{anion} \end{pmatrix}$
(a) For Al H₃
Hybridisation of Al atom = $\frac{1}{2}[3 + 3 - 0 + 0] = 3 = \text{sp}^2$
For AlH₄,
Hybridisation of A1 atom = $\frac{1}{2}[3 + 4 - 0 + 1] = 4 = \text{sp}^3$
(b) For H₂O,
Hybridisation of O atom
= $\frac{1}{2}[6 + 2 - 0 + 0] = 4 = \text{sp}^3$
For H₃O⁺,
Hybridisation of O atom

 $= \frac{1}{2}[6+3-1+0] = 4 = sp^{3}$ (c) For N H₃, Hybridisation of N atom $= \frac{1}{2}[5+3-0+0] = 4 = sp^{3}$ For N H₄⁺, Hybridisation of N atom $= \frac{1}{2}[5+4-1+0] = 4 = sp^{3}$ Thus hybridisation changes only in option (a).

Question193

Which of the following are arranged in an increasing order of their bond strength? [2002]

Options:


A.
$$O_2^{-} < O_2 < O_2^{+} < O_2^{2-}$$

B. $O_2^{2-} < O_2^{-} < O_2 < O_2^{+}$
C. $O_2^{-} < O_2^{2-} < O_2 < O_2^{+}$
D. $O_2^{+} < O_2 < O_2^{--} < O_2^{2-}$

Answer: B

Solution:

 $O_{2}^{+}(15) = K K \sigma 2s^{2} \sigma 2s^{2} \sigma 2p_{z}^{-2} \pi 2p_{x}^{-2} = \pi 2p_{y}^{-2} \pi^{*} 2p_{x}^{-1} = \pi 2p_{y}^{-0}$ Bond order $= \frac{1}{2}(8-3) = \frac{5}{2} = 2.5$ $O_{2}(16) = K K \sigma 2s^{2} \sigma^{t} 2s^{2} \sigma 2p_{z}^{-2} \pi 2p_{x}^{-2} = \pi 2p_{y}^{-2} \pi^{*} 2p_{x}^{-1} = \pi^{*} 2p_{y}^{-1}$ Bond order $= \frac{1}{2}(8-4) = 2$ $O_{2}^{-}(17) = K K \sigma 2s^{2} \sigma^{*} 2s^{2} \sigma 2p_{z}^{-2} \pi 2p_{x}^{-2} = \pi 2p_{y}^{-2} \pi^{*} 2p_{x}^{-2} = \pi^{*} 2p_{y}^{-1}$ Bond order $= \frac{1}{2}(8-5) = 1.5$ $O_{2}^{-2}(18) = K K \sigma 2s^{2} \sigma^{*} 2s^{2} \sigma 2p_{z}^{-2} \pi 2p_{x}^{-2} = \pi 2p_{y}^{-2} \pi^{*} 2p_{x}^{-2} = \pi^{*} 2p_{y}^{-2}$ Bond order $= \frac{1}{2}(8-6) = 1$ **Note:** As we know that as the bond order decreases, stability also decreases and

Note: As we know that as the bond order decreases, stability also decreases and hence the bond strength also decreases. Therefore the correct order of their increasing bond strength is $O_2^{\ 2} < O_2^{\ -} < O_2 < O_2^{\ +}$

